
7
AD-A122 796 TACTICAL EXECUTIVE (TACEXEC): A REAL-TIME SECURE

OPERATING SYSTEM FOR TACTICAL APPLICATIONS(U) SRI
INTERNATIONAL MENLO PARK CA R J FEIERTAG ET AL. JUL 79

UNCLASSIFIED DAAB@7-76-C-8368 F/G 9/2 , N

liii- 1 62 ___

"W...

lii,- W.

MICROCOPY RESOLUTION TEST CHART
I

NATIONAL BUREAU OF STANDARDS- 1963-A .

TACTICAL EXECUTIVE
(TACEXEC): A REAL-TIME
SECURE OPERATING SYSTEM
FOR TACTICAL APPLICATIONS

Final Report

SRI Project 5545
Contract No. DAAB07-76-C-0368

July 1979 -

By: Richard J. Feiertag, Senior Computer Scientist
Karl N. Levitt, Program Manager
P. M. Melliar-Smith, Senior Computer Scientist

Computer Science Laboratory
Computer Science and Technology Division j

Prepared for: D T IC
Department of the Army LECTE
U.S. Army Electronics Command
Fort Monmouth, New Jersey 07703 DEC 2 3 OR.;
Attention: David Egli, Project Monitor ,-. '

B

APPRi "'--"'
AFPROV'LD FC 'F:[!C .E". *:.j.*:i:::

D DISTRIBUTION STATE---.I.T A
Q. Approved for public rleo" i

Diailbution Unlimited:"

SRI International
333 Ravenswood Avenue -

., Menlo Park, California 94025 -7

14151 326-6200
Cable: SRI INTL MPK
TWX: 910-373-1246

82 12 15 091

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)1 READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Final Report ' - § (Q __ _ _ _ _ _

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

TACTICAL EXECUTIVE (TACEXEC): Final Report
A Real-Time Secure Operating System for

Tactical Applications 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
8. CONTRACT OR GRANT NUMBER(s)

Richard Feiertag, Karl N. Levitt, and
P.M. Melliar-Smith

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

SRI International Project 5545
333 Ravenswood Avenue
Mnl12 O DATE NO. OF PAGES

11. CONTROLLING OFFICE NAME AND ADDRESS 979 1. NO O PG

15. SECURITY CLASS. (of this report)

Unclassified

14. MONITORING AGENCY NAME & ADDRESS (if dlff. from Controlling Office)

- 15.. DECLASSI FICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this report)

Distribution of this document is unlimited. It may be released to the
Clearinghouse, Department of Commerce, for sale to the general public.

17. DISTRIBUTION STATEMENT (of the abstrect entered in Block 20, If different from report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary end Identify by block number)

real-time
multilevel security
tactical executive
computer operating system
formal specifications

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

This report describes the design of a computer operating system (TACEXEC)
that supports applications in a tactical military environment. The outstanding
features of the system are that it is secure in the military multilevel

sense and that it assures real time response to external events. TACEXEC is

described both informally and in a formal mathematical notation. Formal and

FORM

EDI JAN 731 7 O Unclassified
EDITION OF 1 NOV 65 IS OBOLETE SECURITY CLASSIFICATION OF THIS PAGE (Wher. Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
19. KEY WORDS (Continued)

20 ABSTRACT (Continued)

informal definitions of security and real time performance are given and
techniques for proving that TACEXEC meets these requirements are described.
Several issues with regard to the implementation of TACEXEC are also discussed.

7:,'

'S

l.-

*i

FOR o A ' (BACK)
DDI JAN 73 1473 c Unclassified
EDITION OF 1 NOV 616 IS OSSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)FDOTON O I NV 6618 .OL-T

CONTENTS

ACKNOWLEDGMENTS........ vii

I INTRODUCTION 1

II DESIGN APPROACH... 5

A. Real Time Behavior..................5

B. Functional Capability.................6

C. Efficiency... 7

D. Security....

E . Provability... 8

F. Portability... 9

III SUMMARY OF HDM............

A. Overview of HDM.................

B. StagesofHDM.................... 13

IV SECURITY REQUIREMENTS FOR TkCZ.XEC..... 15

A. Manifestation of multilevel security in the TACEXEC
design................ 16

B. Multilevel Integrity............... 172
C. Proof of the Multilevel Security of the TACEXEC

design.. 18

D. Security of the Implementation.... 18

V SYSTEM DSIGN................... 1
.~~ ~ ~ ~ 1

A. DISPATCHER 20

B. SYSTEM INPUT/OUTPUT............ 247i

C. VIRTUAL MEMORY.................... 25

Do FILE SYSTEM..... 27o

E. PROCESS PRIMITI VESo............... 29
F. USER INPUT/OUTPUT .o.. 31

G. PROCESS COORDINATION.............. 31

*-VI AN APPLICATION SUBSYSTEM-o-MESSAGE PROCESSING........ 33

4 A. MESSAGE SYSTEM module.33

B. EmbeLishments to the Message System 35

C. Rlealization of Message System.. 35

VII TOWARDS THE EFFICIENT IMPLEMENTATION OF TACEXEC.........37

VIII TOWARDS A HIGH-LEVEL LANGUAGE FOR THE IMPLEMENTATION OF
TACEXEC.. 43

* IX CONCLUSIONS AND POSSIBLE FUTURE TASKS.. 47

APPE NDIC ES

A SPECIFICATIONS FOR TACEXEC...... 52

B SPECIFICATIONS OF MESSAGE SYSTEM...... 104

C MULTILEVEL SECURITY RULES....... 110

1. General model.. 110

2. Restricted Model................ 1

3. Formal Definitions of Relations and Predicates . . . 112

D SAMPLE MULTILEVEL SECURITY PROOF........ 116

E PERMISSIBLE PROCESSOR LOADINGS....... 122

1. Deadline Scheduling....... 122

2. Priority Scheduling of Periodic Tasks.. 123

3. S~mply Periodic Scheduling....... 1241

4. Demonstration of local worst case........ 125

F THE SPECIAL SPECIFICATION LANGUAGE.. 132

1. Description of the Language...... 132

REFERENCES........ 1145

vi

ACKNOWLEDGMENTS

THE HIERARCHICAL DEVELOPMENT METHODOLOGY (HDM), one component of

which is the language SPECIAL (SPECIfication and Assertion Language),
used in this report to describe TACEXEC, was created primarily by Larry

Robinson. Olivier Roubine, Bernard Mont-Reynaud, Robert Boyer, Brad

Silverberg, Peter Neumann, and the authors of this report all
contributed to the development of HDM. The development of HDM was

sponsored at SRI primarily by the Naval Ocean Systems Center under

Contract No. N00123-76-C-0195 (Lin Sutton, Project Monitor), by the

U.S.Government under Contract No. DAAB03-73-C-1954 and the National

Bureau of Standards under Contract No. <430> and by the National

Science Foundation under Grant No. DCR74-18661. In addition to the

Army, under the current contract, the following organizations sponsored

work at SRI on the multi-level security model: U. S. Government,

Contract No. DAAB03-75-C-0399; ARPA Order 331, subcontract with Ford

Aerospace and Communications Corp. and Honeywell.

We are indebted to David Egli for the leadership and encouragement

he offered us during the contract. During the early phases of the

contract, Bernard Newman influenced the overall design of TACEXEC by

alerting us to the particular needs of the Army for a secure, real time

;, executive. Early discussions with Dennis Turner on primitives for

process synchronization were extremely valuable.

aAccso, For
NT73 C1%&i

DTIC TAB LA

ka'.: tt Cof.:coD: -) T-
-, oI,

C.
... :J :

- "" S 'A, :,and/or "

TPDiit Wpea ~
vii

I INTRODUCTION

This is the Final Report under Contract DAAB07-76-C-0368, entitled

"Executive Software". The objective of this investigation was to - -

design* a real-time operating system: The resulting system we produced

is called Tactical Executive (TACEXEC). TACEXEC has been designed to

have the following properties:

(1) Capable of handling the dispatching of real-time tasks,
such as radar processing and weapons control.

(2) Adequate functional capability to support a wide range of
application subsystems, for instance message handling.

(3) Efficiently impLementable.

(4) Secure, in that separation of information according to a
model of muLtilev securt is assured.

(5) Provable, in that formal reasoning it should be possible
to show that critical properties of the system are
satisfied. For TACEXEC, the critical properties are
security and ensuring that tasks are dispatched according
to their real-time needs.

(6) Portable, and capable of being implemented on any of a
number of processors.

Important principles have emerged from the work of Dijkstra [6],

Parnas [7), Hoare [8], and Floyd [9], the impact of which can be

summarized as follows:

(1) It is possible to structure both a software system and
the process of developing the system in such a way as to -

significantly enhance the reliability of the system.

(2) It is possible to write formal specifications for a
software system.

(3) In the near future it should be possible to formally
prove the correctness of a system with respect to ' V

As will become clear later in the report, "design" is a collection of
specifications (perhaps augmented by drawings, text etc.) from which an
"implementation" (code that is directly executable on a processor) can
be realized that will behave according to the specification. V

•~ ~ .. -. . - " .i -i i .- •

-' ' - ' " " . ' • i , . .:- ,.' . " ,' ',- , " , . . ° i i i i _ _ " . . ' . . .1

specified properties. As mechanical verifiers become
more powerful such a proof should be mechanizable.

In addition, the recent attempt to design numerous operating systems

that are inherently structured has led to a collection of canonical

designs that are, in principle, instantiable to meet many applications.

Thus, the design of an operating system is not as onerous an undertaking

as it once was. •

The Computer Science Laboratory of SRI International, has developed

a formal methodology for software development and verification called

HDM (Hierarchical Development Methodology) [10] [11] [12) [13]. HDM is

based on the ideas of Dijkstra, Parnas, Hoare, and Floyd, and on certain

new principles that we developed in the course of applying HDM to real

applications, e.g., TACEXEC. A key aspect of HDM is the language

SPECIAL (SPECIfication and Assertion Language), which is used to specify

the functional behavior of modules, the basic unit of composition in

HDM. By composing a specification for a system, the effort of proving

the correctness of the system can be decomposed into two steps: (1)

proving the specification with respect to an abstract requirements

statement, and (2) proving the design with respect to the specification.

By hierarchically structuring the system, the implementation proof

itself is decomposed into manageable units that mirror the system

structure. This report presents a requirement statement that embodies

the notion of multi-level security and contains sample proofs of the

specifications with respect to that statement. We also present an

informal proof demonstrating that the scheduler's specification implies

sufficient computational capacity to dispatch tasks according to their

real time needs. "

The organization of the report is as follows. Chapter II summaries

our approach toward the design of TACEXEC. A brief review of HDM,

adequate for presenting the details of TACEXEC, is given in Chapter III.

Chapter IV discusses the particular security requirements that TACEXEC

is intended to satisfy. Chapter V, the most detailed in the report,

presents the design of TACEXEC. Chapter VI presents a message

processing system, an example of an application subsystem that can be

2

e)

realized using TACEXEC. An introduction to some of the issues relevant

to a future implementation of TACEXEC is given in Chapter VII. The

criteria for selecting a high-level programming language that is matched

to both HDM and TACEXEC are discussed in Chapter VIII. Finally, Chapter

IX summarizes the impact of the work and lists topics that are

extensions to the TACEXEC investigation. Six appendixes present:

m The specification of the modules of TACEXEC.

* The specifications of a module that provides message
handling facilities.

" The rules for multilevel security.

* An illustration of how the TACEXEC design is proved with
respect to multilevel security.

• A description of the algorithn that is used to schedule
tasks on RTOS and a proof of its adequacy.

'A description of SPECIAL.

The design of TACEXEC is complete, and an implementation is planned

*i at CORADCOM under the direction of Dr. E. Leiblein of CENTACS.

-...

9,;:;

,.3

9 "

II DESIGN APPROACH

In this chapter we summarize the approach that was followed to

attain each of the six objectives indicated in Chapter I. Before

starting this discussion, let us review the well-established purposes of
an operating system; namely to:

Provide an interface (collection of operations) to the user
that is more powerful than that associated with the bare
hardware.

* Manage the resources of the computer, which generally means
allocating them among the users so that the resources are
kept as busy as possible.

Some difficulties are introduced by the need to handle real time

behavior, but again there are well-established techniques for this.

What makes this project challenging are the objectives of security,

provability, portability, generality, and the desire of the Army to have -

an system that has sufficient generality, powere and simplicity to serve

as a model for future systems development. Our approach toward

achieving these goals is outlined below.

A. kaU. 11mg. Behavr.Q

The intent of TACEXEC is to satisfy the computational needs of

tasks in a tactical environment. For real-time tasks this need is to

process tasks within a specific time frame. Among the tasks that might

be served by TACEXEC is a scanning radar, which delivers signals at

regular intervals. Another task could be a fire control system that

requires extensive service, but only in bursts. Message transmission is

another task that is typically of low criticality, except that there

might be a maximum delay that is acceptable for the transmission of a

message. Each of these tasks poses different needs on TACEXEC, leading

us to define three classes of tasks: iterativ, deang, and bAa.grgv=.'
*1-

- 5

How does the system guarantee service requirements, particularly

for the iterative and demand tasks? That is, how is it assured that the

system loading is low enough such that the service need-i will be met in

the worst case of demand, but not too low so as to preclude the

inclusion of additional tasks that could be handled. In Appendix E we

consider this problem and demonstrate the following. There exists an

optimal algorithm A (based on task deadlines) for the allocation and

scheduling of tasks such that all tasks are dispatched on time and no

other algorithm A' permits the allocation of additional tasks.

Unfortunately, the processing time required for this scheduling

algorithm probably precludes its use in typical real time systems. In

its place we suggest a scheduling algorithm based on task priority -- an

easily implemented algorithm -- for which tasks are guaranteed to be

dispatched in time and the system can be loaded in excess of 60% of its

processing capacity while guaranteeing that all tasks will be completed

in time.

*B. FucinlC~blt

In general, the interface provided by a real time operating system

need not be as powerful as that for a general purpose time-sharing

system (e.g., Multics). However, a real time operating system is

intended to execute collections of interacting programs and should have

sufficient functionality to realize some reasonably complicated

subsystems. In TACEXEC we provide the following features at the user

interface.

* virtual memory consisting of dynamically creatable address

spaces and segments

0 a file system

0 a user I/O system

0 processes

a synchronization primitives

Conspicuously absent from the system are: directories, linkage sections,

and support for procedures, as well as other facilities that are found

in general purpose operating systems such as Multics such facilities are

r66

. V_ ~ • . .• ..

_ _ _ _ _ _ _ _ __ S - .•... . . •• ...

useful for program development and for setting up the real time system,

but the hight overheads preclude their use in real time operations. It

should be noted that these latter facilities could be built out of the

TACEXEC facilities if desired. Thus, TACEXEC can be viewed as a kernel

out of which a more complicated operating system could be constructed.

C. Efficiency --

As indicated above, a classic principle underlying an operating

system is the efficient management of resources (cpu, disk, main memory,

etc.). In a real-time operating system this principle is in conflict

with, and of secondary importance to the guaranteeing of timely service

to tasks. In particular, the efficient management of tasks often

introduces nondeterminism such that accurate performance prediction is

not possible. Fortunately, the critical tasks (iterative and demand)

typically require little memory and cpu time for each execution. Also,

there is little sharing of I/O devices in a real time environment. Such

tasks can therefore be given total access to all needed resources of the

system for the short time required for execution. Also, if the program

and data for these tasks is retained in main memory, then it is possible

to guarantee (by tha proof outlined in Appendix E) that the service

needs of these tasks are met. This characteristic of the tasks led us

to the decision that the virtual memory system is to be totally resident

in main ,,emory.

There are other issues regarding the efficient realization of
TACEXEC. A high level language is desirable for easing the burden of

implementation and to aid in portability (see F below). However, there

are important features of a high level language that relate to - -

efficiency. These are discussed in Chapter VIII.

Some operating system functions, such as interrupt handling and

content switching, have very significatnt effects on the real tme

performance of the system. As is discussed in Chapter VII, some

additional hardware support for these functions would result in a

substantial improvement in the performance of the operating system.

"Vm

D. Securiy

TACEXEC is intended for an environment where multiple users have

simultaneous access to the system, and each user wants to be assured

that his information is not available 1.o others without proper

authorizations. That is, the system is not to be a vehicle for the

erroneous disclosure of information. For this environment, the -

level security model appear to be appropriate. In this model, each user

has a clence and a tgory aet; the cartesian product of clearances

and category sets define a partial ordering of security eyjjs. The

values for clearance are the conventional classifications: UNCLASSIFIED,

CONFIDENTIAL, etc. The categories represent an orthogonal restriction,

and include such "controls" as NATO, ATOMIC. The model requires that

information stays at security level at which it originates or flows to

move secure levels.

*The model also includes the notion of ineri which provides

additional restrictions on the flow of information. For example, using

the security restriction alone, there are no limitations to the "upward"

transmission of information. That is, the model does not prevent the

"destruction" of a SECRET document by an UNCLASSIFIED user. The

inclusion of integrity places limitations on such modification.

The model that includes security and integrity is developed in

Chapter IV as an extension of the work by Bell and LaPadula, and Mfillen

at Mitre. The model is also discussed in a recent paper [3] and is

currently the basis for security proofs in the KSOS (Kernalized Secure

Operating System) kernal [14].

TACEXEC has been designed to be provable, in particular by an

automated program verifier. The main properties of concern are security

and real-time adequace, i.e. the guaranteeing that tasks will receive W

promised service. Other properties, potentially of interest, have to do

with to guaranteeing that the user interface operations provide the

intended functional behavior.

K 8
____ ___ ___ ____ ___ ___ ____ ___ __

* . **.-**.*.** -. .. .

-.

As described in Chapter III, the development of systems according

to HDM is accomplished in stages. For example, in the specification

stage, each of the system modules (a module is provided for each

"facility") is formally described by a specification. In the

implementation tagi, the operations of each module are implemented by a

program. (The other stages are described later in the report.) A proof

is associated with each stage. For example, it is possible to prove

that the multi-level security model is satisfied by the specifications

of the modules of the user interface of TACEXEC. Illustrations of such

proofs, called design proofs are given in Appendix D. It is also

possible to prove that the guarantee of service property is satisfied by

the user interface specifications. Separate proofs, called

implementation proofs, not yet carried out for TACEXEC, can demonstrate

that the programs are correct with respect to the specifications.

This separation of proofs serves to simplify the overall proof

process, as any useful decomposition of effort should do. In addition,

it limits the amount of reproving that must be done as the system

evolves. For example, a change to the implementation (eg. to enable

TACEXEC to be installed on a different processor) does not require any "

change to the design proof if the specifications are left intact.

F. Portbiity

No real time operating system can be totally portable. In order to

achieve efficiency, there will always be machine-specific code. Our

concern was to design a system where the amount of effort required to

move TACEX&C from a machine on which it is successfully executing to

another machine is small.

Much of the effort involved in developing a system is associated

with "design." In general, design is concerned with deciding what a

system is to do, while avoiding details on how it is done. In HDM, the

initial stages are concerned with design, while the later with

realization. The output of these early stages is a set of

specifications for the modules and a precise description of the

9

-. .

structure of the system. These can serve as the design for TACEXEC

independent of the hardware on which it executes.

Furthermore, a system developed according to HDM is usually

designed as a hierarchy. (The TACEXEC hierarchy consists of five

levels.) Typically, the modules of the upper levels are implemented by

software, the middle levels by a mixture of hardware firmware and

software, and the lower levels by firmware and hardware. Thus, if a

high level language is used for the implementation, many of the programs

will remain intact in going from one hardware to another.

10

1096

-1

10 -I

2
III SUMMARY OF HDM.

In this chapter we summarize the Hierarchical Development

Methodology (HDM) that was used in the development of TACEXEC. A reader

familiar with HDM or another specification--oriented methodology may

find it unnecessary to read this chapter.

A. Overview 9-C HDM

In HDM a system is realized as a linear hierarchy (a sequence) of

abstract aines, sometimes called levels. The top level is called the

user-interface, as the user of the system perceives only this level.
The bottom level is denoted as the primitive machine. These two

machines together are denoted as the extreme m. The remaining

levels are called .inemeditei macines. An abstract machine consists

of operations, each of which has a unique name and formal arguments. An

operation is invoked (an invocation being similar to a subroutine call

in a conventional programming language) by associating actual values

with the operation's formal arguments. The invocation of an operation

can return a value and/or modify the internal state (abbreviated as

state) of the machines, as reflected by the values of the machine's

abstract data structures. The return of an operation can be either a

concrete value or an e return, the latter corresponding to one

of a number of conditions defined on the state of the machine and the

supplied arguments.

The operations of the of the primitive machine are a mix of (1) a

subset of those of the hardware on which the system runs, and (2)

constructs of a programming language made available to the sytem 0,

developer to hide certain (usually tedious) features of the hardware.

The user-machine provides the operations that are available to the

user of the system, and thus enriches the basic instructions of the

11

'. .; .. / :. . . • -. .. .

primitive machine. In selecting the intermediate machines, the designer

is proposing building blocks to ease the step from the user-interface to

the primitive machine.

A machine specification characterizes the value returned and the

new state for each possible operatin invocation as dependent on the

state of the machine.

In a hierarchy of machines M1 , ..., M (where M1 is the primitiven
machine and the Hn the user-interface), the realization of Hi (i>1) is a

two-step process. First, the abstract data structures of Mi are

represented by those of M Second, each of the operations of H isi-1* i
implemented as a program in terms of the operations of M_. The

collection of implementations for all machines M (i>1) constitutes the

syte implementation.

Usually, a machine is decomposed into smpler, separately

implemented units called modules. A module, similar to an abstract

machine, contains operations and data structures. For purposes of .1
qoecification, the modules of a machine form a partial ordering. That

is, for two modules m and mj of a machine m > m means that the

specification of some operation of mi depends on the values of data

structures in mj. For a well-conceived modular decomposition, there is

little intermediate dependency.

Clearly, the system implementation is the desired end-product of

the system development process. However, its creation is accomplished al

in stages as discussed below.

12

:U't

12

B. Staxes of I

The creation of a system is organized into seven stages as follow.

(1) Conceotualization -- The statement of the intent of a
system in abstract terms.

(2) Highest- Lowest-Level (extre) machine denin --
The description of the modular organization of the user

interface and the primitive machine, and the declaration

of the operations and data structures of each module.

(3) I oate machine defnition -- The description of a
sequence of abstract machines, between the two extreme
machines, that serve as building blocks. Each
intermediate machine is described in terms of modules and

functions in a manner as employed in Stage 2 for the
extreme machines.

(4) Module specification -- The act of giving a formal
specification to each module of the system.

(5) Data reresentation -- The statement of how the data
structures of each machine (ex6ept the primitive machine)
are composed from the data structures of the next lower-

level machine.

(6) Implementation -- The statement of how the operations of
each module (except those of the primitive machine) are

implemented in terms of those of lower-level modules.

(7) COdina -- The formulation of the implementations via
constructs of an executable programming language. This
stage can be avoided if the implementation of modules
(Stage 6) is described using an executable programming

language.

An important aspect of staged development is the separation of

decisions. In each of the stages of development, the developer

formulates decisions and writes them down in formal notation. The

stages have been ordered so that the important decisions -- those that

have major impact on the system--are confronted early in the development

process.

It should be clear that a system is not necessarily created by a

single pass through the stages. Significant iteration is certainly to

be expected. The ordering of the stages might best be viewed as a -

scheme for making the decisions that ultimately lead to the system

implementation and as a technique for documenting a completed system.

13

For TACEXEC, we have carried out the first four stages. A brief

introduction to SPECIAL, the specification language appears in Appendix

F.FU

7

14

--'.-

IV SECURITY REQUIREMENTS FOR TACEXEC

In the TACEXEC we wish to enforce a restriction on the way

information may be passed from task to task. The particular restriction

of interest is called mllleyjliscurity. Each process has associated

with it a CLEARANCE and a CATEGORY SET. The system has a fixed finite

number of clearances that are totally ordered by the relation "less

than". For example, the clearance CONFIDENTIAL is less than SECRET,

which is less than TOP SECRET. For convenience, clearances are

represented as integers.

A category set is any subset of the set of all possible categories.

Examples of categories might be ATOMIC and NATO. The combination of a

clearance and a category set is called a SECURITY LEVEL or equivalently

ACCESS LEVEL; for simplicity, it is often called just a LEVEL when

ambiguity is not likely to arise. A security level Li is equal to a

security level L2 if and only if the clearance of Li is equal to the

clearance of L2 and the category set of Li is equal to the category set

of L2. A security level LI is said to be less than or equal to a

security level L2 whenever the clearance of Li is less than or equal to

the clearance of L2, and the category set of Li is a subset of the

category set of L2. Li is less than L2 whenever Li is less than or

equal to L2 and Li is not equal to L2. Thus the set of all security

levels can be partially ordered. Note that not all security levels are

related by the partial ordering, e.g., two processes with respective

security levels <SECRET, (ATOMIC)> and <SECRET, (NATO)> are not

comparable. The security levels and the relation "less than" define a

lattice since there is a minimum and maximum clearance, and a maximum

set of categories.

In informal terms, a system is MULTILEVEL SECURE if and only if,

for any two processes P1 and P2, unless the security level of P1 is less

.:i 15

-W

than or equal to the security level of P2, there is nothing that P1 can

do to affect, in any way, the operation of P2. That is, P2 is not able

to know anything about P1, not even the existence of P1. This

constraint implies that P1 cannot affect the operation of P2 using an

intermediate process P3. It is not possible for a process at a higher

level to transmit information to a process at a lower level. Therefore,

INFORMATION CAN ONLY FLOW UPWARD IN SECURITY OR REMAIN AT THE SAME

LEVEL, i.e, can only flow to processes of greater or equal security

level.

The above constraint is consistent with the real military security

situation, since -- for example -- an individual whose category set
A

contains only ATCUIC cannot pass information to an individual whose

category set does not contain ATOMIC, independent of the latter's

clearance or the other components of his category set.

A. Mnfstt9 fmlieeseu in tte TACEXEC dsg

In order to ensure that the TACEXEC design is multilevel secure,

the rule of upward information flow must be manifested in the

specifications for the TACEXEC. Multilevel security appears in the - W

specifications in three ways. First, each repository of information in

the specifications must be assigned a security level. This is

accomplished by adding one additional argument to each primitive V-

function (primitive V-functions are the data structures of a machine and

thus are repositories for information) which gives the security level

of the particular reference to that primitive V-function. Second, an

argument is added to each visible function of the specifications that

gives the security level of the invocation of the function. This lo

argument is implicit in that it is supplied by the system, not the

calling procedure, thereby guaranteeing its accurracy. Third,

exceptions are included in each function that abort any function

invocation that would cause information to be transferred from one

primitive V-function reference to another primitive V-function reference

or from the caller of the function to or from a primitive V-function

reference in a manner inconsistent with the upward flow of information.
w

16

6u

Using this technique, multilevel security can be added to any

design, however the added exceptions may be so restrictive as to make

the resulting system useless or very difficult to implement. It is

therefore advisable to incorporate multilevel security into the design

as it is being formulated.

B. Multilevel °0 .jt

The multilevel security model does not prohibit a process at some

security level from modifying information at a higher security level.

However, there are many cases in which such a prohibition is desirable.

Biba [2] has identified the concept of itgrit to solve this problem.

Integrity is the precise formal dual of multilevel security. In

addition to a security level, each process of the system has an

associated integrity level. The set of integrity levels is identical to

the set of security levels and has the same relation "less than". A

system has multilevel integrity if and only if, for any two processes P1

and P2, unless the integrity level of P1 is greater than or equal to the

integrity level of P2, there is nothing that P1 can do to affect, in any

way, the operation of P2. Therefore, information can only flow downward

in integrity or remain at the same integrity level. Integrity can be

used to limit the upward flow of information enforced by multilevel

security. It is important to remember that a process's security level

and its integrity level need not be the same. The primary advantage of

using integrity as a further means of restricting information flow is

that, being the formal dual or security, it adds no significant

complexity to the security model and no significant complexity to the

proof of a secure system design.

Multilevel integrity has been included in the TACEXEC design of

Appendix A. Since anything that applies to mutlilevel security also

applies to multilevel integrity as its dual, there is no further

discussion of integrity and the reader should understand that all

discussion of multilevel security applies to multilevel integrity as

well.

17

- . - • - - - '_ . ; : ' . _ - .m. L. ..z ' dm, , ,.- - , n '- n~ ' zml ,' ,. ,,
m ,

J ,' " m " t , ,, ,- .,.,.,V

C. Proof -f the Multilevel Security of the TACEXEC design

In order to prove that the TACEXEC design is multilevel secure, it

is necessary to have a precise statement of the multilevel security

described above and a precise formulation of the TACEXEC design, and to

prove that the precise statement of security and the formulation of the

design are consistent.

Several precise statements of multilevel security have appeared in

the literature including [1] and [5]. The precise statement of

multilevel security to be used in this report is given in Appendix C.

The precise formulation of the TACEXEC design is given as the

specifications of Appendix A. The proof of consistency is demonstrated

in Appendix D.

D. Se ur t f t e ImnleM entatton -

Multilevel security is the only explicit form of security specified

for the TACEXEC. However, when implementing the TACEXEC an additional

form of security is necessary that is implied but not explicitly stated

in the specifications. It is essential that the implementation of the

algorithms that realize the specifications be inviolate. In other

words, it must not be possible for an TACEXEC process to be able to

modify the software or hardware that implements the specifications. For

hardware, this security constraint is generally equivalent to the

physical security of the machine. For software (and firmware) the

problem is more difficult. Many modern machines have means of

protecting system programs from being tampered with by applications

programs. Features such as separate user and supervisor states allow

such protection to be implemented. However, guaranteeing the isolation

of the implementation software is essential to any other forms of

security provided by the system.

S U1

18

4°

V SYSTEM DESIGN

The TACEXEC provides four basic resources to allow users to perform

desired computations in real time. The four resources are:

PROCESSES - A process is the entity that executes programs and,
therefore, performs the desired computations.

VIRTUAL MEMORIES - Associated with each process is a virtual memory.
The virtual memory consists of a fixed number of segments.
Each segment is a linear address space of fixed size memory
units (words, bytes, bits, etc.). All the memory units are
directly addressable as operands to instructions and the
contents of a memory unit can be accessed in an amount of time
on the order of an instruction execution time of the machine.
There is a limited amount of virtual memory storage.

FILES - Files provide an alternative form of storage to the virtual
memory. Files may only be accessed in their entirety, i.e.,
the entire contents of a file may be copied into a segment of
a virtual memory or the contents of a segment may be placed in
a file. It is not possible to access individual words, bytes,
or bits of a file. The amount of file storage will, in
general, be much greater than the amount of virtual memory
storage.

I/O CHANNELS - Channels provides a means and minimal conventions for
communicating with particular I/O devices that are connected
to the TACEXEC. Means are provided for sending data and
commands to devices and for receiving data and status - -

information. Some basic synchronization is possible between
devices and processes.

These resources are sufficient for accomplishing any necessary

computation. They have been chosen to permit simplicity of system

design, ease of use by programmers, minimal system overhead, and

predictable real time performance.

1

19 ,

A. DISPATCHER

The DISPATCHER creates the abstract object called a process. A

process is the entity that executes the instructions of a program

necessary to compute some task. The DISPATCHER provides three

operations for instantiating a process (i.e., creating a process that

will execute the instructions of a given task),

SCHEDULEITERATIVE.PROCESS, SCHEDULE_DEMANDPROCESS, and

SCHEDULEPACKGROUND_PROCESS. These three operations require, as

arguments, sufficient information to locate and interpret the

instructions to be executed, and to assure the proper real time behavior

of the process. The arguments common to all three operations are: -

p - the identifier of the process

p_c- the program counter which is the address of the next instruction
to be executed by the process p

m_s -the contents of the machine registers of the process when it
begins executing

The remaining arguments describe the desired real time behavior of

iterative and demand processes and are different for each:

ITERATIVE PROCESSES

int - the interval of periodicity for the process (the process must
be permitted to run once in every "int" time units

dur - the duration of execution of the process (the process must be
allowed to run for "dur" time units within the given interval) -

begin_time - the time at which the process should first begin
running

DEMAND PROCESSES

e - the external event whose occurrence will cause the process to
begin running

dur - the maximum number of time units the process will run when an
event 'e" occurs

min_.period - the minimum number of time units between two
occurrences of the event "e"

Whenever a process wants to wait for some notification from another

process, or has completed its current iteration (in the case of an

201-
- ~1

r

iterative process), or has finished processing an occurrence of an event

(in ths case of a demand process), it does so by invoking the operation

BLOCK. The operation block will not return to the invoking process

until the awaited notify occurs, the time for the next iteration of the

process arrives, or the awaited event occurs. Although a process cannot

detect that processor multiplexing is taking place, an invocation of the

operation BLOCK is an indication to the DISPATCHER that the invoking

process can relinquish the processor on which it is currently running

and that a different process can now use the processor. However, an

invocation of BLOCK looks to the invoking process simply like a delay.

The operation TICK describes the effect of the passage of time

(i.e., the incrementing of the clock). It is not necessary (and, in

fact, would not be reasonable) to implement the indicated effects at the

time the clock is incremented; these effects can be achieved by other

means. s

The operation OCCURRENCE indicates that the event given as its

argument has occurred causing demand processes awaiting that event to

begin running. The operation NOTIFY causes all processes waiting for

the given "wakeup" to begin running. A process invoking the operation

WAIT, with some "wakeup" as an argument, indicates that when that

process next invokes BLOCK with an argument of TRUE, that the process

will await the occurence of a NOTIFY on that wakeup. The operation

CONTINUE cancels the effect of the preceding WAIT if one has been

invoked since the preceding invocation of BLOCK. The remaining

operations of the DISPATCHER: CREATEPROCESS_IDENTIFIER, CREATEEVENT,

and CREATE_I'AKEUP, simply perform the action indicated by their name.

In order to implement the above operations, any implementation of

the DISPATCHER must maintain state information. There must be a list of

all currently instantiated processes and information about the state of

execution and the scheduling of these processes. This information is

represented in the specification of the DIPATCHER by the primitive V-

functions H_PROCESSEXISTS and HPROCESS_INFO. The information about

each process maintained by the V-function H_PROCESS_INFO consists of the

U

21

4

type of the process (i.e., iterative, demand, or background), the next

time the process should begin to run, the interval of iteration for

iterative processes or the minimum time between events for demand

processes, the run time required by an iterative or demand process for

each iteration or event occurrence, the event a demand process should

wait for, the wakeup a process is waiting for if it is waiting for a
wakeup, the program counter of the process, and the state of the

process' registers. Each process can be properly scheduled and

dispatched based on this information. The remaining piece of
information returned by H_PROCESSINFO, processing-remaining, is the

number of time units of duration that have not yet been expended in the ".

current iteration. This information is not essential to the scheduling

algorithm, but it does increase the reliability of the system. If a

process runs for longer than its stated duration during some iteration,

then it is permitted to continue running on a low priority basis, i.e. •

it may be preempted by a higher priority process. In this case the

errant process may miss some iterations, but it will not effect the real

time performance of any other processes. In addition, the DISPATCHER

maintains a list of processes waiting for a wakeup (H_WAITINGPROCS),

the current time (HTIME), and existing events and wakeups

(H_EVENT_EXISTS and H_WAKEUP_.EXISTS).

Most of the complexity of the specification of the DISPATCHER iii -

the definitions. It is, therefore, useful to briefly describe the O

purpose of each of the definitions. The definition

TIMECRITICALPROCESS returns TRUE if its argument is an it.rative or

demand process. PROCESS_READY returns true if its argument could be

running but isn't. PROCYRIORITY returns the priority of a given

process. Iterative and demand processes have higher priority than

background processes. Also, processes with shorter intervals have

higher priorities than processes with longer intervals. READY_PROCESSES

is a list of processes ready to run in decreasing order of priority.

PREE4PTABLEPROCESSORS is a list of all the processors in increasing

order of the priorities of the processes running on each of the

processors. The PROCESSORUTILIZATION of a given iterative or demand

22

-S "So•. , '

process is simply the fraction of the processing power of a single

processor that the process could possibly consume in the worst case.

For an iterative process, the worst case occurs if the process runs for

its full duration at each iteration. For a demand process, the worst

case occurs when events occur at the maximum possible rate and the

process runs for its full duration at each occurrence. LN_2 simply

represents the natural logarithm of 2.

Once these definitions are understood, the effects of each of the

specified operations are simple to understand. For example, consider

the specification for the BLOCK operation. The effects of this

operation state that the first (higest priority) process on the list of

ready process will begin to run on the processor previously occupied by

the process invoking BLOCK. The time for the next iteration of the

newly running process is revised and the processing remaining for this

process is set to its full duration. The specification of the time of

the next iteration (nextservice) appears to be rather complex. This

complexity is necessary for the case, discussed earlier, in which a

process runs for a time exceeding its stated duration. In this case, it

will miss all iterations which arrive until it finally calls block.

This somewhat complex specification for next_service permits the process

to become resynchronized with its iterations.

Or consider the operation TICK. If any ready process has a higher

priority than some running process, then the running process is

preempted by the ready process and the high priority ready process runs.

The real time clock is incremented and the processing time remaining for

each running process is decremented. Note that the processing time for

all processes that are waiting and would have been runnning if they had

not been waiting are also decremented. Therefore, a waiting process is

considered to be the same as a running process for the purpose of

computing its real time performance.

23

'1

B. SYSTEM INPUT/OUTPUT

The TACEXEC does not support any particular types of input or

output device, it simply provides a means for communicating with any

device that may be connected to the system. The communication protocol

is made very simple and general to make it easy to use and to permit

utilizing a great variety of different types of devices. Since the

opertions of the SYSTEM INPUT/OUTPUT module are not visible at the

TACEXEC system interface, no security constraints are placed on the use

of the various communication channels. The multilevel security

constraints are imposed by the USER INPUT/OUTPUT module which is the

user interface to the communication channels.

Each communication channel is identified with an integer. There

are four operations for communicating with an input/output device. Each

of these operations requires an integer as an argument to identify the

channel being addressed. This integer is called the "device index".

The READDEVICE operation inputs a unit of data from the device.

WRITEDEVICE outputs a unit of data to the device. SEND_CO4MAND sends

control information to the device and RECEIVE_STATUS returns information

about the status of the device. .

The information transferred by each of these operations is
bufferred. Each channel has four buffers, one each for input data

(H_INPUT), output data (HOUTPUT), commands (K_COMAND), and status

information (HSTATUS). This means that the process communicating with

the device and the device itself do not have to be completely

synchronized. However, some synchronization is necessary. For example,

a process cannot send a second unit of data to a device until the first

unit of data has been received by the device. In general, if a process

tries to send or receive information to or from a device at a speed

significantly faster or slower than the device is receiving or sending

that information either an exception will result or information may be

lost.

In order to send or receive information to or from the system, the

device has four operations that it may invoke. DEVICEOUTPUT receives

24

0!

77- T 7 7

data sent to it by the system and DEVICEINPUT sends data to the system.

DEVICE_CQMMAND receives control information sent by the system and

CHANGESTATUS modifies the status information returned by

RECEIVE_STATUS. In addition, CHANGE_STATUS may cause an event to occur

if its second argument is TRUE. Each device can cause some particular

event to occur and the event caused by each device is determined by the

operation SETEVENT. Note that the device index of the operations that

can be invoked by a device is an implicit argument of the operation.

This is because the system knows which device index corresponds to each

channel and it is not necessary and undesirable for the device to

provide this information. The four operations that can be invoked by

devices would normally be implemented in hardware. The operations

invoked by TACEXEC processes may or may not be implemented in hardware.

C. VIRTUAL MEMORY

The virtual memory of the TACEXEC consists of some address spaces

each of which contains some number of segments. Each process in the

TACEXEC is associated with some address space. The address space

contains all the directly addressable storage accessable to the process.

Each address space can contain some fixed predetermined number of

segments. A segment is essentially an array of storage units (words,

bytes ,bits, etc.). A process can address a storage unit by giving a

segment number and a segment index. The segment number identifies a S

segment in the address space associated with the process, and the

segment index specifies a storage unit in that segment. When a process

is executing on a processor, all the segments of the address space

associated with that process will be contained in directly addressable '

memory. This assures that data in storage can be addressed quickly in

order that real time constraints can be met.

Each address space has an associated storage quota. The storage

quota of an address space is the maximum number of storage units that

can be contained in segments belonging to that address space. Both

address spaces and segments can be created and destroyed. A segment can

25

be shared (accessed) by more that one address space, however, each

segment is owned by only one address space, the address space in which

the segment was created, and the storage units of the segment are IV
considered to be part of the quota of the owning address space.

The VIRTUAL MEMORY module is the lowest level module containing

operations accessable at the system interface. Therefore, it is

necessary that these operations be multilevel secure. Much of the

complexity of the VIRTUAL MEMORY module is due to the necessity to

enforce the multilevel security constraints. In the following

discussion the virtual memory is discussed without mention of multilevel

security, as the basic design is not a consequence of any security

constraints. The addition of the multilevel security constraints to the

basic virtual memory design is straghtforward.

The data necessary to support the virtual memory includes the

currently existing address spaces (H_AS_EXISTS), the quota for each

address space (HASSIZE), the segment corresponding to each segment

number of each address space and whether or not that segment is owned by

the address space (H_AS_ENTRY and H_ASENTRY_OWNED), and the contents of

each storage unit of a segment (H_READ). The primitive V-functions

H AS USED and H_SEG_USED are needed to generate designators for address

spaces and segments.

The function CREATEADDRESSSPACE returns a designator for a newly

existing address space with the given quota and at the given access

level. Initially a newly created address space contains no segments. A

segment can be created by CREATE_SEGMENT. The newly created segment

will have the given segment number in the given address space. The size

of the segment and its initial contents are also given in the invocation

of CREATESEGMENT. The address space in which a segment is created is

said to "own" that segment. This means that the storage used by the

segment is charged against the storage quota of that address space and

that the segment may be deleted only from that address space. The ..

function GET_SEGMENT adds an already existing segment to the given

address space. This function is used to allow processes operating in

26

different address spaces to share the same segment. The function
DELETE_-SEGMEMT removes a segment from the given address space. If the- -
segment being removed from the given address space is owned by that

address space, then the segment is deleted. Deleting a segment

effectively removes the segment from all address spaces from which it

could be accessed. The function DELETE_ADDRESS_SPACE deletes the given "2
address space and all segments owned by the given address space.

The functions SEGMENTREAD and SEGMENTWRITE read and modify

respectively the specified word in the segment with the given segment

number in the address space of the invoking process. The specifications

for the function SEGMENTWRITE are somewhat complex because the system

permits information to be written by a process of lower security level

to a segment of higher security level. However, in this case the system

is not permitted to inform the user whether or not the writing operation

was actually accomplished nor even if the segment being written actually

exists. Therefore, if the function GET_SEGMENT is invoked to enter a

segment from a higher level address space into the invoking process's

address space, it is necessary for the system to pretend that the

segment exists even though it may not. One of these phantom segments is

represented in the specifications by having H_ASENTRY for the segment

being undefined and having H_AS_OWNED being defined. ;1

The functions SEGMENTCREATE and SEGMENTDELETE are nearly

identical to the functions CREATESEGMENT and DELETESEGMENT.

SEGMENT_CREATE and SEGMENT_DELETE are intended for use at the system

interface and therefore, are restrictive in how they may be invoked.

CREATE_SEGMENT and DELETE _EGMENT are intended for use within the system

and therefore, permit greater flexibility.

D. IYSTE

The file system contains data which is collected into repositories

called files. Unlike segments in the virtual memory, the data in files 3

may not be accessed individually by words, the file may be accessed only

as a unit. In order to access individual elements of data in a file,

27

the contents of the file must be loaded into a segment where the data

may then be accessed using the virtual memory operations SEGMENTREAD

and SEGMENTWRITE. It is intended that the data in files be stored on

bulk storage devices for these devices are well suited to storage

accessed in this manner.

As with virtual memories there are storage quotas on the amount of

data that may be stored. There is a storage quota for each access level

that restricts the number of data storage units that may be collectively

contained in files at the access level.

All the state information of the file system is embodied in the V-

function H_FILECONTENTS of the specifications. Each file has a name

and an access level. If the value of HFILECONTENTS is undefined for a

given name and access level, then that file does not exist. If,

however, the value of H_FILE_CONTENTS is defined then the value is a

vector of the data in the file.

The operations CREATE_FILE and DELETEJILE create and delete

respectively a file of the given name at the access level of the

invoking process. A process cannot, of course, create a file with the

same name as an already existing file at that level. The operation

LOADFILE copies the contents of the file with the given name into a

newly created segment with the given segment number in the invoking

process's address space. The access level of the file is determined by

a given access level argument to LOAD_FILE. The operation UNLOADFILE

copies the contents of the segment with the given segment number in the

invoking process's address space to the file with the given name at the

access level determined by the given level argument. The file must

already exist and the previous contents of the file are destroyed. The

operation APPEND TO FILE is similar to UNLOADFILE except that the

previous contents of the file are not destroyed and instead the data

from the segment is appended to the end of the file.

28

E. PROCESS PRIMITIVES

The operations of this module are much the same, in function, as

those of the DISPATCHER. However, at this level, the level of PROCESS

PRIMITIVES, the specifications are written from the point of view of an

individual process, rather than from the point of view of the system.

For example, in the dispatcher, an invocation of the operation BLOCK is

specified as one that performs processor multiplexing, whereas in the

process primitives, an invocation of the operation BLOCK is viewed as a

simple delay since this module specifies the point of view of only a

single process. In an implementation, both specifications of BLOCK

would be identical. The two different views of these modules are both

useful, depending on the particular aspect of the operation of the

system in which the reader is interested.

The operation CREATEEVENT returns a designator for a new event.

The argument to CREATE_EVENT gives the minimum period of the event,

i.e., the minimum time between two occurrences of the event. The

operation occurrence indicates that the given event has occurred. Any

demand process awaiting the occurrence of the given event will be

activated. .

An invocation of the operation BLOCK causes the invoking process to

be delayed. If the invoking process is an interative process then the

process will be reativated when time arrives for the process' next

iteration. If the process is a demand process then BLOCK will return

when the event associated with the process next occurs.

The operation TICK indicates the passage of time. Each invocation

of TICK indicates the passage of a single time unit. In an *0

implementation, TICK will most likely be invoked by and implemented by

special clock hardware.

The operations CREATEITERATIVE..ROCESS, CREATE_DEMAND_PROCESS, and
4 CREATE_BACKGROUNDPROCESS create respectively iterative, demand, and

background processes providing the appropriate parameters for

establishing the new processes. Note that each of these operations take

29
'29

• .4

an address space as an argument. This address space is the one that

will be associated with the newly created process. One of the

exceptions to each of these operations is RESOUCE_ERROR. This exception

will occur if the system is so heavily loaded with iterative and demand

processes that the addition of the new process may not allow the system

to meet the real time scheduling constraints given in the

specifications. Note that since these operations are to be implemented

in terms of the operations SCHEDULE__ITERATIVEPROCESS,

SCHEDULEDEMANDPROCESS, and SCHEDULE._BACKGROUNDPROCESS of the

DISPATCHER, the exception RESOURCEERROR must be true whenever the

addition of the new process to the system would violate the assertions

concerning overloading given in the specifications for

SCHEDULEITERATIVEPROCESS and SCHEDULEDEMANDPROCESS.

The use of the exception RESOURCEERROR in the operations

CREATEITERATIVEPROCESS, CREATEDEMAND_PROCESS, and -.9

CREATEBACKGROUNDPROCESS, could produce a multilevel security

violation. This is because RESOURCEERROR does not precisely specify

the conditions under which the exception occurs. It is possible that in

some implementation, the occurrence of this exception is dependent upon

data at various security levels and, therefore, may compromise highly

secure information. In this case the potential security violation is

deliberate. The processing resource is to be shared by all processes at

all security levels. This means that it is possible that if the machine

is loaded with TOP SECRET processes, an UNCLASSIFIED process may not be

able to be created (this is technically a security violation). Avoiding

this security violation would require strict partitioning of processor

resources and would lead to less effective processor utilization. In a

real time system, highly effective processor utilization is important

and so this technical security violation was felt to be acceptable. In

practice, administrative controls on adding tasks to the system would

eliminate the security problem (the violation would create only a noisy

and very low bandwidth information channel in any case).

w
30

4. I

The operation SEGMENTGET is simply a reformulation of the

operation GET_SEGMENT of the VIRTUALMEMORY in terms of the destination
process rather than the destination address space. This is possible

since the association between process and address space is known at the
PROCESS PRIMITIVES level whereas it was not known at the VIRUAL MEMORY

level.

The information necessary to define these operations includes the

primitive V-functions H_PROCESSEXISTS and H_PROCESSINFO which indicate
respectively whether or not a given process exists and what its
scheduling parameters are. H_EVENT_.MIN_PERIOD indicates whether or not
a given event exists and what its minimum period is. H_TIME gives the

current time.

F. USER INPUT/OUTPUT

User input and output is very similar to system input and output,

the only difference being that since the user input and output is

visible at the system interface it must obey the constraints of

multilevel security. Therefore, each device is assigned an access level

(by the functional parameter H_DEVICEAL) and each operation includes an

exception that is true if the invoking process is not at the proper

level for performing the operation upon the given device.

G. PROCESS COORDINATION

The two operations of the PROCESS COORDINATION i odule provide a

means of coordinating the the activities of two or more cooperating

processes. The operations are the standard P and V operations and they

use the value of a word in a segment as the value of a semaphore. The V

operation increments by one the value of the given word. The P

operation decrements by one the value of the given word, however P will
not cause the value of the semaphore to become negative, it will wait

until it can safely decrement the value of the word without making it

negative.

31

U'? -,S"--

VI AN APPLICATION SUBSYSTEM--MESSAGE PROCESSING-

In this chapter, we develop a subsystem that can be realized in

terms of the operations of the TACEXEC user interface. Two purposes are

served by this exercise:

* We demonstrate the general utility of the TACEXEC user
interface.

I We present a module for handling messages in a multi-level

secure manner--an interesting module in its own right.

In the following sections we present:

* A description of the specifications of the message system.

I Some embellishments that the reader might consider for

subsequent incorporation.

A brief discussion of the realization.

A. MESSAGE SYSTEM module "6

We hypothesize a new abstract machine aboie the TACEXEC interface,

consisting of the modules MESSAGE SYSTEM and VIRTUAL MEMORY. The

specification of the latter was previously discussed so we concentrate

here on the specification of the MESSAGE SYSTEM module which is depicted

in Appendix B. It is convenient to view the module as being composed of

two groups of functions: (1) those associated with "user" management,

and (2) those associated with the handling of messages.

The former group consists of the functions: USEREXISTS, e
USER_EVEREXISTED, CREATE_USER, and DELETEUSER, for which the major

design decisions are the following:

0 Only a particular user, the "security officer", can cause
the creation or deletion of users. The security officer
exists at all access levels.

0 Associated with each user is a designator (USEIID) and a
name. The former acts as a password, presumably available
only to the security officer and the user. The "name" is

33

known to all other users who wish to communicate with the
user in question.

A user when created at some access level at, also exists

(can send or receive messages) at all access levels not
exceeding at.

I For each access level there is a quota of potential users,

as declared by the parameter MAXUSERS.

r there is no reuse of USER_,D designators. The function

USEREVER_EXISTED records all of such designators that have

ever been associated with users.

User names can be recycled, but aLL users in existence at
any instant have unique names.

Orhe security officer is not required to obey the multi-
level security rules. For example, the CREATE_USER
function invoked at access-leveL at, apparently affects the
V-function USER._2XISTS at all levels below at.

Now let us consider the design decisions associated with the
functions: MSG_CONTENTS, SND_MSG, READJ4SG, and D9LETE_MSG, for which

the major design decisions are the following:

* A message is a vector of words.

I ALL users at a level have a quota on the number of messages

that can be received and on the total amount of memory that
can be expended for message storage.

I A user sending a message to another named user must

identify the access Level at which that user will read the
message.

I A sent message is the contents of a segment.

A user identifies a message by number for the purpose of
reading or deleting it.

rhe handling of messages obeys the rules of multi-levet
security and integrity. Thus, If the transmitting of a
message by a user operating at security level n to a user S

at n1, n1 > n, would precipitate an exception due to
exceeding the quota of the user at n1, this condition is
not made apparent to the user at n; the message is simply
not transmitted.

• rae system determines if a user attempting to use the

message system is a valid user.

34

I I IwT h I - I'~ - "-. -'

B. Embellishments to the Messa ystem

Since our intention was primarily to illustrate an application

system for TACEXEC, rather than construct a elegant message handling

system, we have left out many desirable features. (A good example of a

powerful message is that developed for the ARPANET.) Among the features

that could be added to our system are the following:

0 Provide quotas on the basis of access levels rather than
just users. Clearly, system-wide quotas are not
acceeptable in a multi-level security environment.

Allow a user operating at a level n to read all messages
destined for him at any level n2 <= n, rather than
requiring him to read only those messages at his operating
level.

I Allow for the forwarding of messages..

I Allow the copying of messages into segments.

0 Provide a realistic LOGIN function as part of a command
level module.

C. Realizat ion Qf &sai System

As indicated previously, the operations of the TACEXEC user

interface are to be used to realize the MESSAGE SYSTEM module. Below,

we sketch some of the representation and implementation decisions that

could form the basis for such a realization.

0 A separate address space would be established to provide

storage for the MESSAGE SYSTEM. In particular, a segment
would store the global information on users. Some of this
information could be kept on a file, with mimimal
information retained on a segment.

* Each mail box (characterized by the function MSG_CONTENTS)
would be represented by a segment.

* Tne USERID designator type could be represented by a set
of characters.

* It is assumed that message handling is not necessarily a

critical task. Hence, the act of sending, reading, or
deleting a message could be handled by a background process
that is created just for that task. If for some
applications, message handling is critical, then a demand
process would be created at system Initialization time to
handle messages.

35

VII TOWARDS THE EFFICIENT IMPLEMENTATION OF TACEXEC

We may regard the operating system as providing a virtual machine,

or rather several virtual machines, on which are run the real time

applications programs. This virtual machine could be implemented

entirely by software interpretation, as for instance an APL virtual

machine is, but this would be extremely inefficient. An implementation

entirely in hardware might be efficient, but would be expensive and

would take a long time to develop. Consequently, we must consider
implementations in which the operating system virtual machine is

implemented in part by software, and in part directly by hardware. In

particular, we must consider implementations using the kinds of

processor hardware that is readily available, for instance, the PDP11

architecture and the GYK-12. Examples of the operations that must be

implemented in software are:

create_segment,
load file,
create_demand_process,
schedule_iterativeprocess,
etc.

Such operations must be implemented as supervisor calls to operating

system software procedures with security privileges. Examples of

operations that can be implemented directly by hardware, with

appropriate safeguards, are:

simple arithmetic operations,
conditional brands,
iteratior,
procedure entry and exit,
etc.

Some operations might be implemented as supervisor calls to software

procedures, but are used sufficiently frequently and are sufficiently

37

op

simple that, for an efficient system, consideration must be given to

providing these operations by a short sequence of hardware operations.

An obvious example for the PDP11 architecture is the user input/output

operations.

Clearly the operations implemented in software will be slower,

possibly much slower. Much of this delay is caused not be the inherent

complexity of the operation but instead by the need to change protection

context so that the operating system procedure can access security

sensitive data that must not be avaiLable to reaL time application

programs. Another contribution to the cost of software operations is

the very careful checking of parameters to the operation, which is -,
necessary to ensure that accidental or malicious use of the operations

cannot subvert the security of the system.

Consequently, we must expect that a software implemented operation

will take at least 100 times as Long as a operation implemented directly

by hardware, and there are many examples of existing systems where this

factor is 500 or more. This kind of large speed ratio between hardware

and software implemented operations forces us to consider the number of

software operations that will be needed. If the ratio is 100:1 and 1%

of the operations are software implemented, then the software

implemented operations will need 50% of the processing time of tne

system. Now typical real time application programs are very snort,

seldom requiring more than 100 operations per activation, of wnich at

least two and probably four to six will be software implemented.

Further, to keep the ratio as smaLL as 100:1 will not be easy. Thus the

proportion of the processing time needed for software operations could

rise well above 50%.

It is important not to regard this software "-verhead" as wasted

time. These operations implemented in software are important, necessary

parts of the total system. They are no more wasted than any other

necessary operations, but they are expensive and tnus their

implementation and their use must consider this expense.

38

or

In a non-secure operating system, many of the operations wiLl (or

at Least could) be equivalent to those of TACEXEC, and may be as

expensive as those of TACEXEC. But where real time performance is

important a non-secure operating system can be designed so that the time

required for software implemented operations is substantiaLly Less than

in TACEXEC. Tnis saving would be obtained by eliminating the parameter

checking and changes in protection described above, and by allowing 0

every program access to all the data of the system. An example of such

an approach is the stack-based interrupt handling of the smaller PDP11.

Not only does this approach violate the security requirement, but it

also prejudices the reliability of the system for a fault in any one
*V

program could damage other programs or the operating system. A fully

secure system should not be significantly more expensive than a system

capable of preventing accidental damage. Below we consider alternative

methods of improving the real time performance of TACEXEC without loss

of security.

The design of TACEXEC, Like almost all other modern operating

systems, is designed so that the simple arithmetic, Logical, and flow of

control operations can be implemented by hardware without software

intervention. Almost all the checking for sscurity Level and category

is confined to the segment_create and getsegment operations, which

include a segment within the address space of a process. SubsequentLy
49

the checks, that reading is only from segments within that address i

space, can be performed by hardware protection mechanism. The

definition of segment write in TACEXEC is appropriate only if the

nardware protection mechanism has a write only setting for access to

segments (the PDP11 does not). The value of this feature is uncertain

and in the absence of a hardware write only capability the

specifications could be simplified.

TACEXC does not specify, but does not preclude, an implementation

in wnich segments are split into fixed size pages for storage

aLLocation, nor does TACEXEC specify or preclude the movement of

segments or pages between storage mechanisms of different speeds. An

39

implementation of this kind would certainly be more complex and less

certain in its real time capabilities, but the security properties of

the system would not be substantially affected.

Similarly TACEXEC does not provide for input-output operations that

transfer multipLe words between storage and peripheral. Witnin the

: PDP11 architecture it is possible to set the hardware protection

mechanisms to allow direct transfers of single data words between --

processor and peripheraL, without intervention by operating system

software and without Prejudice to the security of the system. Devices

which require autonomous transfer of many words of data cannot safely be

used directLy by real time application programs, but must be managed by

secure operating system procedures, with correspondingly higher

overhead. It would be possible to extend TACEX6C to include these

autonomous transfers, though possibly extensions for specific devices,

e.g., communications, displays, etc, would be as appropriate.

Inclusion of both paging and user defined autonomous transfers

significantly increases the complexity of the design, indeed removes the

design from the area of small operating systems into that for large

mainframe operating systems. Security breaches have been found in many

existing operating systems because of the interactions between these two

features.

It is clear that the parameter checking is essential for security

and that performance improvements cannot be obtained by skimping on

these checks. Thus performance improvements must come from either

reducing the context switching time or by increasing the speed at which

operating system procedures are executed. The first of these, reducing

the context switching time, might be achieved by providing a privileged *.

supervisor mode with a second set of registers in which aLl time

critical operating system procedures are obeyed. The second

alternative, increasing the speed of execution of operating system

procedures, could be obtained by implementing them in horizontal

microprogram. This second alternative automatically includes the first,

for microprograms regularly have access to many additional registers,

40

and it aLso reduces the time required for parameter checking and other

operating system functions. With horizontal microprogram speed

improvements of five to ten times have been observed, sufficient to

reduce the time for software implemented operations to a quie

acceptable Level.

The arguments against microprogramming significant parts of the

operating system are:

(1) cost and difficuLtLy of microprogramming,

(2) risk of error and cost of field charges,

(3) differing operating system needs for different projects,

(4) uncertainty as to what will be needed and thus risk of
future upgrades,

(5) cost of microprogram storage,

(6) division of organizations into hardware and software
teams.

Of these (5) is now negligible, and (1) is not significant if the

operating system is to oe widely used. Those aware of the real costs of

operating system changes wiLl know that the costs of hardware upgrades

not significantly greater than for software upgrades. Many of the -"

differences referred to in (3) are due to attempts to avoid or aLleviate

the performance penalties of a standard operating system, performance

penalties that would not be incurred with a microprogrammed operating

system. Further, differing operating systems are as great a bar to

compatibility and portability as nonstandard hardware. Given the costs

in software development that might be placed at risk by an upgrade in

fundamental operating system characteristics, it is worth thinking about

the design carefully in advance and getting it right, whether in 7,

* hardware or software. Item (6) need be no obstacle in the right

* context.

A computer with Large parts of its operating System in horizontal

microprogram (the G9C4080) was delivered to customers in the U.K. in

October 1972. Development was not found to be particularly difficult,

* the anticipated performance advantages were realized, and no subsequent

41

problems of errors or inflexibiLity were encountered. This computer has

remained in production since then and is quite popular in the U.K.

We would recommend that a production implementation of TACEXEC

should use microprogram to reduce the time required for critical

operating system functions.

4V

42

- W"

VIII TOWARDS A HIGH-LEVEL LANGUAGE FOR THE IMPLEMENTATION OF TACEXEC

The design of TACEXEC is based on the concept of abstract data

types, defined by the modules of the specifications. ExampLes of the

types defined are:

process, wjsegment, .

category set,

access LeveL,
event.

Ideally, the Language used to implement TACEXEC should provide

mechanisms to aLLow the definition of new types, and subsequently the

use of such types with the same fLexibiLity as if they had been built

in. Unfortunately, very few languages currently provide for the

definition of new types by the user, and those few Languages are quite

unsuitable for TACEXEC implementation. ShortLy the Ada Language (DOD-I)

will become available, and wiLl provide the needed mechanisms. UntiL

then, it wiLl be necessary to live with existing Languages that are Less

than ideal.

Three other Language capabilities are necessary for the

implementation of TACEXEC. These are:

access to low Level machine facilities,
paraLLeL processing faciLities,
exception handling facilities.

The access to low level machine faciLities is necessary to aLLow

the TACEXEC implementation to use hardware facilities for protection,

relocation, user processes, Lnterrupt handling, etc. Access to low -

Level machine facilities are aLso necessary for implementing the input-

output functions of TACEXEC. These Low Level facilities are required

only in certain very LocaLized sections of program, and thus the

43

Language facility providing this access can be quite crude. It wiLl

also be necessary to preclude use of these Low leveL operations by user

programs, but this restriction wiLL be imposed by TACEX9C and the

hardware, rather than by the Language.

TACEXEC needs within itself a number of paraLLel processes that

operate asynchronously. The facility needed is however very basic, for

the more elegant and easy to use faciLities provided to user programs

are constructed by TACEX9C itself. ALL that is required in order to

implement TACEXEC is the ability to describe paraLLeL processes

(programs) that share data only explicitLy and the ability to construct

a binary semaphore so as to provide a program to handle a interrupt.

Access to the register and status information of suspended programs, and

use of this information to resume such programs--facilities necessary

for the dispatching functions of TACEXEC--wouLd presumaDly be provided

by access to low Level machine faciLities.

TACEXEC makes extensive use of exception returns to indicate

invalid use of its facilities, as do aLl other operating systems. Tne

specifications are written on the basis of an exception handling

mechanism distinct from any other results returned by the operations.

Such distinction is very helpful to the programmer, to make programs

simpler and easier to understand, and also to make the compiled code

smaLler. However, this distinction between exception returns and normal

returns with results Is not essential to the functioning of tne system.

While a Language such as Ada would be ideally suited to the

implementation of TACEXSC, it is clear that the final definitive

Language, and efficient compilers for that Language, will not oe

- available for, perhaps, two to three years. Other comparable Languages

are either only partially developed and do not yet have compilers

either, such as Euclid, ModuLa, ALphard, and CLU, or eLse require

enormous run time support systems much Larger than TACEXEC, sucn as

SimuLa and ALgol 58. Consequently, the initial versions of TACEXEC must

be implemented in some other existing Language.

44

7

There is no reason to doubt that other existing Languages can be

used to implement TACEXEC. Every function required for TACEXEC can be

provided, but the programs will be less obvious and Less easy to read

than in a Language specifically intended for building systems from user

data types.

For instance, in a Language without user defined data types and

without type checking, the user defined data types become simply data

items or data structures such as arrays, while the operations on the

data types become procedures. Of course, the existing compiler will not

be able to perform any type checking, thus requiring a speciaLly

designed preprocess or much greater care by the programmers to ensure

that these operations are only applied to data items of the correct

"type".

Access to low Level machine facilities, and the operations on

semaphores, might preferably also be provided as procedures, the bodies

of wnich would be programmed in assembly Language. The use of

procedures will cause an additional overhead, but will restrict the

assembly code to specific procedures and will reduce its adverse impact

on the readability of programs.

Advantage can be taken of the named COMMON, COMPOOL, or equivalent

facilities of many Languages. The structure of TACEXEC is such that

most data structures need be accessed only by a single program module. .

If this data is declared in a named COMMON in that program module only,

then the risk of Inadvertent access by other program module is greatly

reduced. Unnamed or blank COMMON should never be used.

The mechanisms used to achieve parallel processes in TACEXEC must "

depend on the details of tne particular language implementation.

Particular care must be taken over the implementation of Local variables

and temporary variables, and also over the use of any Language run time

support procedures. There is a risk that the same data storage w
locations may be inadvertently used by several processes.

45

U'

• *1

In the absence of an exception handling mechanism, the exception

returns from operations must be represented by additional parameters in

the results returned. The values of such parameters must be tested

before the other results can be used.

In concLusion, recent research has Led to an understanding of the

features required of a high-level programming Language for the efficient

realization of system structured as a hierarchy of modules. The most

promising Language is Ada, but until its appearance several other

languages could be used provided the programmer follows certain easily

established conventions.

22

oi1

46

1

IX CONCLUSIONS AND POSSIBLE FUTURE TASKS

The main products of this investigation are

(1) A design for the kernel of a real time operating system
(called TACEXEC) expressed as specifications for the
seven modules that comprise the system. The
specifications are written in tne Language SPECIAL.

(2) A mathematical model (developed in part on other SRI
contracts) that defines acceptable information transfers
among users according to their security Level.

(3) A method for proving the specification of TACEXEC with
respect to the security model, and the ilLustration of
this method for several of the specifications.

(4) Several algorithms for allocating and scheduling

':t iterative tasks in a multiprogramming environment such
that all tasks are guaranteed to obtain service as
needed. An informal proof is given that one of these
algorithms achieves maximum usage of the system,
excluding the overhead time for the scheduler. The
algorithm that achieves Less than optimum usage at the
benefit of a simple scheduling discipline (based on task
priority).

* We believe that TACEXEC can realize the goals established in

Cnapter I: (1) capability for handling real-time tasks, (2) adequate
6

functional capability for supporting a variety of subsystems, (3)

efficiently impLementabte, (4) secure, (5) provable and (6) portable.

For example, to demonstrate (2) we described an approach to realizing a

secure message system using the primitives of TACEXEC.

We believe that TACEXEC in its present form can serve as a

practical kernel for many future array real time operating systems.

However, since there are problems related to the proof of TACEXEC and to

its use in complex configuration, we recommend the following tasks be

considered in an extension of the current investigation.

* Multiprocessor Configuration: The design of upper Levels of
the current TACEXEC is not affected by the number of

47

hardware processors, which impacts only the Level of

resources available. Each type of task indigenous to tne
tactical environment is handled easily by a minicomputer.
A muLticomputer configuration could be effectively used for

situations where the computing requirements of the tasks
exhaust the capacity of a single machine. Our present plan
is to consider the implementation on a single processor.
We propose to generaLize the Lower levels of the design so
that they can execute on a variable number of processors,
where suitable multiprocessor hardware is available. The
main problems to be considered relate to the management of "

processing and storage resouces without sacrificing tne
security or guaranteed performance.

I Network Configuration: ALL components of the multiprocessor

configuration discussed above are assumed to be contiguous.
A more general situation would involve a geographical -*

separation of the computers as a network. Many of the
problems and solutions associated with multiprocessor
systems apply here, except that the Low inter-connection
bandwidth must be considered in allocating resources to
processes. In addition, the security issues are compounded
by computer separation, for example:

(I) crypto graphic techniques might be needed to
secure the transmission,

(2) some computers might be insecure, and hence

cannot be fully trusted,

(3) a computer might fall into enemy hands and thus

act in a malicious manner.

Fault Tolerance: For critical applications it is essential
that useful computation continues, even in the presence of
hardware faults. Many techniques have been suggested for
providing such fault tolerance, particularly for the type
of tasks that are our concern. For example, the SIFT
concept,16] enables critical tasks to be processed by two
or more processors, provides for a comparison of the result
computed by the replicated processes and performs rapid
reconfiguration of the system on the detection and Location
of a fault. We would consider incorporating the SIFT
concept into a multiprocessor configuration. One potential
disadvantage of tne SIFT concept is that it is extravagant
in its use of redundancy. This may not be a serious
criticism as the cost of the computer hardware diminishes.

It may also be possible to alleviate this problem by using

redundancy techniques that are more cost effective in

speciaL situations, e.g., error correcting coding for U

storage.

0 Recovery From Application Program Errors: We envisage that,

by formally verifying the TACEXEC and by incorporating

48

hardware redundancy into the system, the TACEXEC will be
invulnerable to "system" failures. However, some of the
application programs may not have been verified, and an
error in on application program could have serious effects 4V
for that application (though it would not affect any other
independent applications). A technique developed at the
University of NewcastLe, by Brian RandaLL and Michael
MeLliar-Smith, addresses this issue. Briefly an acceptance
test is provided wLth the application program, which if not
satisfied by a particular invocation causes an aLternate -
version of the program to be invoked. We would include the
mechanisms for such detection and recovery within the
TACEXEC, and investigate techniques for writing acceptance
tests and aLternate programs for tactical programs. The
original recovery concept would have to be extended to
handle asynchronously communicating programs. l.

Proof Techniques: The need to produce a compLete,
impLementabLe TACEXEC design within the current contract
precluded the aLlocation of significant effort to
verification of the system. We designed the system so that
it is provable, but the actual development of the
implementation proofs will require significant effort. In
particular, there is a need to prove properties reLating to
the system's ability to meet the time constraints required
of the appLicaton programs, a problem that was only partly
addressed during this current investigation. Also, the
current work is concerned with scheduLing for the worst
case. Future work should consider a distribution for
processing times.

Extension of SPECIAL: During the investigation the SPECIAL
specification Language evolved, primarily to express the
behavior of a module that is accessed by asynchronous
processors. It is not clear that the spscification 0
constructs we proposed are formalizable for proof or are
adequate for expressing general inter-process
communications. Additional effort is needed here that
should be preceded by an investigation of a variety of
system applications, including distributed systems.

S

I

49

..

Appendix A

SPECIFICATIONS FOR TACEXEC

U

51

U

Appendix~ A

SPECIFICATIONS FOR ThCEX9C

CONTENTS

* INTERFACE SPECIFICATIONS

TACEXEC. 53

TACEXEC D 53

TACEXECC 53

TACEXEC B 53

TACEXEC A.. 53

MODULE SP&CIF ICATIONS

PROCESS COORDINATION 54

USER INPUr/OUTpuT 58

PROCESS PRIMITIVES. 63

FILE SYSTEM 2

VIRTUAL MEMORY. 79

SYSTEI4 iNpLT/oUrPur 89
DISPATCHER. 93

52

(INTERFACE~ TACEXEC

process__coordination

user~io

processprimitives

ftilesy stem

(virtuaLjnemory WITHOUT createsegment deLete_segment

get...segment)

(INTERFACE TACEXEC...

fiLe_system --

virtuaL_mpemory

system_10

dispatcher

(INTERFACE TACEXEC_C

virtuaL~memory

system-io V

dispatcher

(INTERFfACE TACEXEC.3

system_lo

dispatcher '
(INTERFACE TACEXE...A

dispatcher

53

- PROCESS COORDINATION

MODULE process- coordlnatlon

* TYPES

cLearance: {INTEGER 1 0 < i AND i <= max_cLearance 1;

category.set:

* I VECTOROF BOOLEAN cs : LENGTH(cs) number_of_categories 1
* access~leveL:

* STRUCT_OF(clearance security..clearance;

category..set securi ty__ategories; -

cLearance integrity cLearance;

category__A.et integrity.categories);

- segmenVtnumber: (INTEGER sn '1 0 <= an AND sn < segments- pra}

- offset: (INTEGER 1i 0 <= i AND i < max_seg..size); -

- DEFINITIONS

BOOLEAN read...aLLowed(access...level subjectaL, object...aL)

* IS subjectL...security..cLearance

>= objectAL.securLyclearance

AND subject_aL.Integrity..cLearance .

<= objeeL_aL.integriy..cLearance

AND(FORALL INTEGER 1 1 0 < i AND i <= number_of-categorles:

(objectaL .security...aegories~iI

=> subject.aL .security...aegories~i1)

AND(subjec_.AL .integrityocategoriesriI

=> object.at .integritycategoriesE i)));

BOOLEAN urile...ALLowed(access_leveL subjectaL, object-aL)

* IS read_aLiowed(object..aL, subjeotal);

accessjleveL seg...access1evel Csegment s)

IS SOME accesajeveL L EXISTS address~space as:

EXISTS segmentL.pumber sn:

54

PROCESS COORDINATION

AND ft_as..entryowned(as, Sn, L)

=TRUE

AND -(EXISTS access_leveL Li1

readaLLowedC], Li):

h-as _entry(as, sn, Li)

:5

AND ft-asentryownedC as,

sn,

TRUE);

EXTERNALREFS

FROM virtuaL-.memory:

addressspace, segment: DESIGNATOR;

INTEGER max_ cLearance $(the highest cLearance)

number_of _categories,
segments..peras $(tne number of possibLe

segments in an address space),

maxseg..size $(the maximum size of a segment);

VFUN th_asexists(address_space as; accessjeveL 1.) -> BOOLEAN b;

* VFIJN h_,as entry~address space as; segmen....umber sri; access_leveL L)

->segment s;

* ~VFUN h_asentry..owned(address..space as; segment-number sri;

access_leveL 1) -> BOOLEAN b;

VFUN hread(segment s; offset os; accesajleveL 1.)

-INTEGER contents;

* ~OFUN segment...rite(segment..number sn; offset os;

INTEGER contents) -

Eaddress..space as; access _leveL aLl;

55

U PROCESS COORDINATION

FUNCTIONS

OFUN P(segment..number sn; of'fset os)

[addressspace as; accessleveL aLl;

$(Retu~rn if vaLue of s was greater than 0 with vaLua

of a decremented by 1)

DEFINITIONS

segment s IS ft as_epntry~as, sn, aL.,;

EXCEPTIONS

h_as.entryowned(as, sn, aL) ;

s ? OR segaccess_leveL(s) aL; -

h_read(s, os, seg...acces_leveL(s)) ?

DELAY UNTIL h..read~s, os, seg...access~leveL(s)) > 0;

ASSERTIONS

h_as~exists(as, al); -

EFFECTS

EFFECTSOF

segment..urite(sn, os,

h..read(s, as, segaaeess~leveL(s))-l,

as, a)

OFUN V(segment_.umber sn; offset os)

[address..space as;access_leveL all;

*$(Increment the vaLue of semaphore s)

* DEFINITIONS

segment s IS h..as..enry(as, sn, aL);

* EXCEPTIONS

h...as..enry...wned(as, sn, aL) ?;

s -=? AND read..aLLowed(aL, seg..accessjleveL(s))

AND -wrlteaLLowed~al, seg-access leveL(s));

* s -7 AND read..alLowed(aL, segaccessjeveL~s))

AND n_read(s, o3, seg...access...leveL(s)) ?;

ASSERTIONS

n-as-exists(as, al);

IV EFFECTS q

56

PROCESS COORDINATION -

s ? AND wrLt4e_aLLowed(aL, segaccess_eveL(s))

AND h...read(s, os, seg~access~levet(s))?

segment..write(Sn, os,

h..read~s, as, seL..access-levet(s))+1,

[I as, aL);

ENDMODUL

57S

USER IN4PUT/OUJTPUT

MODULE user_ic

TYPES

cLearance: I INTEGER 1 0 < i AND L. <= max_cLearance I
categoryset:

IVECTOROF BOOLEAN cs LENGTH(cs) = number_oqf_categories 1;
access_level:

STRLJCT _OFC clearance securiLyciearance;

category_set securitycategories; v
clearance integriy...Learance;

category_set integritycategories);

PARAMETERS

accessleveL t_deviceaL(INTEGER dev..And) $(access level of each

device);

* DEFINITIONS

BOOLEAN read...aLLowed(access_leveL subjecta.L, object-_al)

IS suoject.aL .security_.p.Learance

>= objectal.security~cLearance

4 ~AND subject.aL .integrtty.clearance0

<= objectal .integrlty...Learance

AND(FORALL INTEGER 1 1 0 < i AND i <= number~pfcategorLes:
object..aL .securLty..categoriesri] i

* > subjectal .securitycategoriesC ii)

AND(subjecaL .Lntegritycategor~es7-iI

* BOOLEAN write..aLLoed(accessjeveL subject-aL, object..aL)

IS read..aLLowedobject..aL, subject..aL);

58

USER INPUT/OUTPUT

sXrERNALREFS

FROM processprimitives:

event: DESIGNATOR;

OFUN occurrence(event e)

[accessleveL at] $(Event e has occurred)

FROM virtuaL_memory:

INTEGER max_cLearance $(the highest cLearance)

numberofcategor Les;

FUNCTIONS

VFUN hdeviceevent(INTEGER devind; access_leveL at) -> event e;

$(Returns the event which can occur when device status

changes)

HIDDEN;

INITIALLY

e ?

VFUN h_input(INTEGER devind; access_leve aL) -> INTEGER data;

$(The current input from the device)

HIDDEN;

INITIALLY

data = ?;

VFUN h-output(INTEGER devind; accesslevet at) -> INTEGER data;

$(The next output to the device)

HIDDEN;

INITIALLY

data =?;

59

USER INPUT/OUTPUT

VFUN h_command(IdTEGMR devind; access_level at)

-> INTEGER command; $(rie next command for tne

device)

HIDDEN;

INITIALLY

command ?;

VFUN hstatus(INTEGER devInd; accesslevel at) -> INTEGER status;

$(The current status of the device)

HIDDEN;

INITIALLY

status ?;

OFUN set._event(INTEGR dev_ind; event e)[accesslevel at];

$(When status changes event e may occur)

EXCEPTIONS

write_aLLowed(aL, n_deviceaL(dev_Ind));

EFFECTS

'n_device_event(devind, hdeviceat(devind)) e; -9

OVFUN read.device(INTEGER dev-ind)access_levet at]

-> INTEGER data; $(Read data from device)

EXCEPTIONS S

at -z ndeviceaL(dev_ind);

n.input(devjind, at) =?;

EFFECTS

data = h-input(dev-ind, at);

'n_tnput(devind, at) ?;

OFUN writedevice(INTEG&R dev_ind; INTEGER data)[access_leveL at];

$(Output data to device)

EXCEPTIONS

it hdevice_a(devind);

h_output(dev_ind, at) ?; .I

EFFECTS -

60

lp

useR iNPUtr/OUTPUT

'iLoutput~devind, at) =data;

OFUN send_command(INTEGER dev-ind; INTEGER command)

raccessL_leveL all; $(GLve command to device)

14 1EXCEPt IONS

aL h_deviaeaL(devi nd);

h-.command(dev-nd, at) 7

EFFECTS

'hk_command~devind, at) command;

VFUN receive-status(ENTEGER dev-ind)(access_level all

-INTEGER status; $(Get the devices status)
EXCEPTIONS

read_allowe-d(at, k_devi3eL_al(dev-ind));

h...status~dev..ind, at) =?

DERIVATION

h-status(dev-ind, at);

v6
OVFUN deviae...outputo[INTEGER dev _ind] ->INTEGER data;

*Device reads data it Is to output)

EXC EP1 IONS

hk-output(dev-i.nd, h_devicea(dev..ind)) =?;

EFFECTS

data = Ii_output(dev..ind, i_device_al(devjind));

'houtput(dev.ind, h-deviaea(dev-.ind)) = ?;

OFLJN dev'ice _input(INTSGRR data)[INTEGgR devjind];

$(Device places input data into input buffer)
EXCEPT IONS

h~..input(devjind, n-deviae_a~dev-.ind)) ?;

EFFECTS

'b...input(dev..ind, h_deviaeat~dev-ind)) data;

61

usER iNPUT/OUTPUT

OVPUN device_cosumani)[INTUGH dev'_mndi INTEGER command;

s(rhe device gets a command)

EXCEPTIONS

h_command~dev..ind, h-device-aL(dev_iid)) ?;

EFFECTS

command h-command(dev.ifd, h-devi-eaL(dev-ind));

'h command~devind, n_device..aLdev...ind)) =?

OFUN change _status(NTEGER status; BOOLEAN occur)

(INTEGER dev...ind]; $(Reset the status of the

device)

EF Ers
ORALL access_leveL 1 read_aLloued(l,

h-dev ic ...aL (devi d))

'h_status(devjind, 1) =status;

(occur

AND hdeviceevent(dev..ind, h...device-,al Cdev...ind)) ?)

=> 9FFECTS_OF occurrence(h-device_event(dev.ind,

h-device..aL (devjnd)

-. h-device-aLdevind));

ENDJNODULE0

62

PROCESS PRIMITIVES

MODULE processprimitt ;es U

TYP9S

process, event: DESIGNATOR;

machine_state: DESIGNATOR;

processtype: (iterative, demand, background 1;

segment_number: { INTEGER sn ' 0 <= sn AND sn < segments__peras 1;

offset: { INTEGER L 1 0 <= i AND i < maxseq_size };

programcounter: STRUCTO(segment_number sn; offset of);

process_info:

STRUCT_Og(processtype type;

INTEGER nextservice;

INTEGER Lnterva;

INTEGER duration;

INTEGER dea"line;

INTEGER processingremaining;

event ev;

BOOLEAN running;

address,_space as;

programlcounter pa;

machine_state ms);

clearance: { INTEGER i 0 < i AND L <= max_clearance };

category-set:

{ VECTOROF BOOLEAN as LENGrH(cs) = numberof-categories 1;

accesslevel:

STRUCT_OF (clearance security-clearance;

category_set securi ty-categories;

clearance integrityclearance;

categoryset integritycategories);

63

PRiOCESS nmRirvss

PARAMETERS

INrEGER start_time $(time when system is initialized)

program-counter initial-pc $(address of first instruction in
first process);

machine_state initial..js $(the initial state of' LoicaL machine

registers for each new process);

DE?'INITIONS2

BOOLEAN time _criticaL..process~process p; access_level 1)

IS h...process_info(p, l).type iterative

OR h-.process-i.nf'o(p, 0..type demand; '
acoess_1.evel initial_level

IS STRUCT(1,

V9CTORCFOR 1. FR0M 1 TO number_ofZ categories: FALSE),

marc_clearance,

VECTOR(FOR I FROM 1 tO number-ot..sategories: TRUE));

BOOLEAN read_aLlowed~access_leveL subject.al, object..aL)

IS subject..al.security_clearance

>= objectal.security.clearance

AND subject__..a..integrity..clearance

<= objectal.integrity...learanoe

AND(FORALL INTEGER L 1 0 < i AND i <= number_of..categories:
* C ~object_al.securitycategories~iI

=> subjectaL.seurity...ategories[i])

AND(subject.al. integritycategoriesiI

=> object.al..integritycategories[il));

* ~BOOLEAN write._allowed(access_level subject.al., object--aL)

IS read_alLowed(object..aL, subjectal.a);

olp]

64 1

-. PROCESS PRIM'ITIVES

EXT ERNALR EFS

FROM4 virtual__memory:

addressspace: DES IGNATOR;

INTEGER max_.clearance, number_of _categories, segments..peras,

max-seg-size;

VF'UN .11_as..exists(address.space as; access_level aL) ->BOOLEAN b;

OFUJN getsegnentC addres...space sourceL-as;

access_leveL source_.AL;

segment,.number source _sn;

segment-number destsn)

[address..space as; access-level all;

ASSERTIONS

FORALL process p; accessL_level I. timecriticaljprocess(p, 0):

h..process-info(p,, L).processig..retoaining >= 0;

FUNCTIONS

1

VFUN h...process exists(process p; access-level al) ->BOOLEAN b;

$True if process p exists)

HIDDEN;

INITIALLY

CARDINALITY((process p 1 hprocess_exiists(p,

initi-aL-level)

AND(FORALL access-level1 1 1 - initiaL-level:

FORALL process p: h...process...exists(p, 1) TRUE);

65

10

PROCESS PflinrvES

VFUJN hprocess into (process p; access_level aL) ->process..int'o pi;

V(Returns saheduling information about a g~iven process)

HIDDEN;

INITIALLY

pi

=(IF hprocess_exists(p, al.)

THEN STRUCT(background, ?,?,,?,??,,

(SOME addressspace as
h_as_exists(as, initial._leveL)),

initia..pc, LnitiaL_ns)

ELSE ?);

VFUN tk_event..minperiod(event e; access_leveL al.)

->INTEGER min period;

* $(True it' the avent e excists)

HIDDEN;

INITIALLY

FORALL event e:

CARDINALITY(faccessL-leveL 1 1h_eventmin..period(e, L) -1D)

AND (FORALL access _level 1 1 h_event,_nin..period(e, L.) -1:

VLJN h_timeo) -> INTEGER time; $(Clock time)
HIDDEN;

INITIALLY

time starttine;

OVIJN create _event(INTEGER min..period)[access-level all - event e;

V(Create a new event type)

EXCEPrIONS

EFFECTS

t_event_*inperiod(e, al) =-1;

* 'ti-event-min..period(e, at) =min~period; -

66

PROCESS PRIM4ITIVES

OFUJN blocko(process p; access_leveL aLl;

$(The process running wishes to relinquish the processor) 4
EXCEPTIONS

-time _criticaL...process(p, al);

DELAY WITH 'h..process_inf'o(p, al).running F'ALSE;

UNTIL h..process_info(p, aL).next,..service < hx_timeo)

AND h time()

<= hprocess_info~p, al).next_service

+ h process..info(p, aL).intervaL

- .process...info(p, aL).duration;

EF'FECTS

h-process~info(p, al).type =iterative

=> 'h process inf'o(p, aL).next..service > h_timeo)

AND 'h~processinfo(p, al) .next,_.servi3e

-h..process..jnfo~p, at).interval

< h-timeo)

AND(EXISTS INTEGER n:

h...processinfo~p, aL) .next_service .4
+ nl * h...process-into(p, al).interval

-'h...process info~p, al).next,_service);

h...process~info(p, al).type demand

=> 'hprocessinfo~p, aL).next_sAervice ?;

'h-.process...info~p, at) .processing..yemaining

" h~processinfo~p, at) .duration;

'h..processjinfo(p, at) .deadline

- h-.process-int'o~p, aL).neict_service

+. h .process-..info(p, aL).Intervat;

'h..proess...nfo(p, al).running =TRUE;

OUN tick()[access-level aLl; $(Time passes so increment the U

clock)

ASSERTIONS

al = initiLatjeveL;

EF'FECTS

'hk-timeo) h..time() 1;

67

PROCESS PRIMITIVES

FORALL process p;access_level I.

time-crliticaL-process~p, WL

AND ?u..process_info(p, WL.running:

IF tkprocess_info(p, aL).processingremaiqing

< hprocess_info(p, al).deadline - h_time()

THEN 'h..process~info(p, al) .processingremaining

-h~process-.info(p, al) .processlng~remaining

OR 'h...process int'o(p, aL) .processingj'emaining

h...process-info(p, at) .processin&_remaining

EL.SE 'hprocess~info(p, aL) .processing.yetaining

- &processinfo(p, aL) porocess in._,remai ning;

* OVFUN create_iterativeprocess(INTEGER Lnt;

INTEGER dur;

.do~ess .space nas;

prograqmcounter npc;

access _leveL 1)

(access_level aLil

->process p;

$Permit the process p to be scheduLed and run as in

iterative process)

EXCEPrioNS

dur < 0;

int < dur;

write _atlowed(al, L);

readaLlowed(aL, L) AND -h_as_exists(nas, 1.);

* RESOURCE_FRRO4;

EFFECTS

h_as_exists(nas, L)

=> hLprocess__exists(p, 1.) FALSE
* AND Ih-process..exists(p, L) = RuE

AND 'hkprocess_info(p, L)

STRUCT(iterative,

* AND I < tl_time() int),

68

PROCESS PRfl4IrIVES

int, dur, ?, 0, ?,FALSE, nas, npc, lnitial_s);

OVFUN create _detnandprocess(lNTEGEfl dur;

event e;

addressspace nas;

program-counter npc;

S access_level 1)
[access_leveL al

-process p; $(Permit the process p
to run whenever event e

occurs)

DEFINITIONS

access _level el

IS SOM4E accessleveL eL. read_aLlowed(at, Wl.

AND hk_event...mirperiod(e, el) >0;

EXCEPTONS

eL ?

h..event_inn.period(e, eL) <= dur;

dur < 0;

-write_at lowed (al, 1);

read_aLlowed(aL, L0 AND -h..as.exists(nas, 0);

RESO(JRCE-ERROR;

EFFECTS

1_as_exists~nas, 1.)

=> h...process exists(p, 1.) =FALSE

AND 'W..process..xists(p, 1) zrRUEe

AND 'hprocess info~p, 0)

=STRUCT(demand, ?, h_event_in.jeriod(e, eL),

dur, ?, 0, e, FALSE, nas, npo, LnitiaL-ms);

OVFUN create_background-rocess(address.space nas;

programn..counter npo;

access-leveL. 1)

(access-level all

->process p;

69

PROCESS PRL4ITIVES

-write__atlowed(aL, 1);

read-atlowed(aL, L) AND -has..exists~nas,)

RESOURCE_ERROR;

EFFECTS

rxas-exists(nas, L)

=> h~process xists(p, 0. FALSE

AND 'b.processexists~p, L) rRUE

AND th..process_into~p, L)

STRUCT(background, ? ,? ,? ,?

nas, npc, LnitiaL_ms);

OFLJN delete4,rocess~process p; access _level 1)taccess_level all;

$(The process p at Level 1 no longer should exists)

EXCEPTrioNS
-write...aLlowed(al, 0);

C(read~aLlowed(aL, L) => h-process.info(p, 1) -

EFFECTS

'ItprocessL~info~p, 1) ?

OFUN occurrence~event e)raccessleveL aLl; $(Wake up processes

waiting ror event e)

EXCEPTIONS

-(dXISTS accessL-leveL eL 1 read_allowed(aL, el):

h_.event.jnin...period~e, eL) > 0);

ASSERTItONS

* FORALL access-leveL 1 1 write_aLlowed~al, 0):

FORALL process p 1hprocess_info(p, L).ev e:

hprocess_info(p, 1).deadiine <= l~timeo;

EFFECTS

41 FORALL access-level 1 1writeaLlowed(aL, L):

FORALL process p 1 hprocess_info~p, L).ev e:

'h-process..info(p, L).nextservice =h..timeC);

70

PROCESS PRIIIVES

OFUN segmeftget(process source..p;

segment-n..rumber source-.sn;

access_leveL sourceaL;

segnent...nuinber dest_SAn)

[process p; accessL-level aL];

EXC EPT IONS

read_aLlowed(aL, source..aL)

AND h...process -infosource..p, source..at)

EXCEPTIONSOF

get...segment(h..process_infoC sourcep, source...al).as,

source..aL, source__,sn, dest,_sn,

* h..process _info~p, aL).as,

at);

ASSERTIONS

hk-process-.into~p, at)

EfFECTS

EFFECTSOF

get-..segmentC h..process_infoC source.p, source-..at). as,

soure..aL, sourceesn, dest..sn,

h...process info(p, al).as,

* at);

ENDJMODULE

71

FILE SYSTEM

MODULE ftle...system

TYPES

clearance: I INTEGER 1. 0 < i AND i <= maxc_clearance 1
categoryset:

(19CTORO BOOLEAN es LENGTH(cs) number_at _categories 1;
* accessL_level:

STRUCTOF~clearance security..clearance;

category-set security..categories;

* . clearance integrity...learance;

categoryset Integritycategories);

segment..number: f INTEGER sn 10 <= sn AND Sn < segments..peras 1;
otfset: I INTEGER L. 1 0 <= i AND L. < max_seg~size)

segment..bound: { INTEGER . 1 0 <= i AND I <= max_seg.size 1
name: {VECTOR_OF CHAR n 1 LENGrH(n) <z namne..lengthl;

* tiLe_address: STRUCT..OF(name rim; INTEGER off);

word: ONE..OF (INJTEGER, name, process,

event, wakeup, processor, address..space);

PARAMETERS

INTEGER miaxc...iles~acces_level 1) $Cthe most files at Levet 1),

max_leveL_size~access-leveL 1) $(the amount ot storage at
leveL 1);

DEFINITIONS

BOOLEAN read_aLlowed(access_level subject..at, object..at)

1S -subjec~t.al.security..clearance

* >z objeo-t at.securityclearance

V ~AND 3ubject..aL.tntegrity-..clearance

72

-uFILE SYSTEH4

<= object,_aL.integrityclearance

AND(?ORALL IN4TEGER L 1 0 < i AND t <= number_of...categories:

(objectal.security..categories~i]

=> subject~at .securit.y..categories~i])

AND(subjectat tntegrity-categories~i]

BOOLEAN write_atlowed(access_level subject..At, object,.at)

IS read-allowed(object.aL, subJect..at);

access_eveL. seg...access~evel~segment s)

IS SOWE accessL_leveL 1 1EXISTS address..space as:

EXISTS segment_number sri:

h.as_entry~as, sri, 1) s

AND has..entryowied(as, sri, 1.)

TRUE

AND -(EXISTS access _leveL 111

read...alowed~l, 11):

h_asL_entry(as, sri, Li)

AND h-as-ertry-owried(as,

sn,

=TRUE);

INTEGER segmerit-..sizeC segment s)

IS CARDINALITY(f off'set 1I h..yead(s, 1, seg..accessleveL(s))

STOF access_level read_name set(name ni; access_level ri., at)

ISf access_leveL 1 I read_,aLlowed(rl,)

AND read_atlowed~at, 1

AND I_fiLe_contentsri, 0L ?

AND CE9XISTS accessjleveL 11 1
4 read_allowed~rl, t1) AND read...alowed(ll, 1):

h-file..conterits(n, Li) ?) I
SETOF access~levet writejiame..set(name ni; access-level wl., at)

IS faccess-level 1 1 write-atlowed~wL,)

AND write_atlowed(aL, L

73

FILE SYSTEM

AND ik-f~iLe-.contents~n, ?-

AND -(EXISTS access leveL 11

write._allowed(wL, 11) AND write_atlow-ed(ll, 1):

h-file_contents(n, Li)

INTEGER Level-size(access..leveL 1)

IS CARDINALITY((fiLe..address addr h..fie_contents(addr.nm, I

[addr.offl

EXTERNALREFS

FROM virtual_memory:
* address_space, segment: DESIGNATOR;

INTEGER max~segsize $(the maximum size-of a segment)
max_clearance $(the highest clearance)
number_of! categories,

segments.per.as $(the maximum number of segments Ln an
* address space),

name..length $(number of characters in a name);

VFLIN h_as...xists~address_space as; access_level at) -> BOOLEAN b;

VE'UN h_read(segment s; offset i; access_level 1) ->word a;

VFUN h_as..entry~address..space as;

segment..number sn;

access_level 1)

>segment s;0

VFUN has-..entry..owned~address..space as; segment....umber sri;

access-leveL 1)

->BOOLEAN b;

* OFUN segment create~segment-number an;

segment_bound i;

VECTOROF word initial_contents)

[address...pace as; access_level all;

74

FILE SYSTEM

FROM dispat-her:

event, process, wakeup, processor: D9SIGNATOR;

FUNCTIONS

VFUN h_file_contents(name n; accessleveL 1)

-> VECTOROF word contents; $(The contents

of a fLte)

HIDDEN;

INITIALLY

contents ?;

OFUN createfiLe(name n)[access-leveL all; $(Create a new file)

EXCEPTIONS

h_fiLe_contents(n, at) "?

CARDINALITY(U name n I h-fie_contents(n, at) -- ? })

>- max_fites(al);

EFFECTS

'h_fiLe_contents(n, at) VECTORO;

OFUN deletefiLe(name n)(access-leveL all; $(Delete an existing

fiLe)

EXCEPrIONS

h-fiLe-contents(n, at) =?;

EFFECTS .

'h_fiLe_contents(n, at) =?;

OFUN LoadfiLte(name n; access_leveL r; segment-number sn)

I [address_space as; access_leveL all;

$(Create a new segment wLth segment number sn with the

contents of file with name r)

DEFINITIONS

access_leveL I

75

FILE SYSTEM

IS IF CARDINALITY(read-name-set(n, ri, aL)) 1

THEN SOME access_level 1 INSET read-iname-set(n, r'1,

at)

ELSE ?;

EXCEPT IONS

* 12?;

EXCEPTrIONS_OF segment create(sn,

LENGTH(h_file__contents(n, L

VECTORO, as, at);

ASSERTIONS

h-as-exists(as, at);

EFFECTS

EFFECTSOF segment..create(sn,

LENGTH(h file_contents~n, M),

htjile__contents~n, 1), as, at);

OFUN unload~file~name n; accesslevel wI; segment~jiumber sn)

[address-space as; access_level all;

*Copy the contents of segment sn into file with name n)v

DEFINITIONS

segment s IS h_as_entry~as, an, at);

access_level 1

IS IF CARDINALITY~write-iame..set~n, wt, at)) 1

THEN SOME access_level 1 INSET write_name..set(n, wt,

at)

ELSE ?;

EXCEPT IONS

h_asentryowned(as, sn, at) ?

a ? OR -read_atlowed(al, seg~access..jeveL(s));

=X(read-allowed(at, 0)

=> segmentasize(s) + levelsize(l)

-LENGTHh.fiLe contents(n,)

<= max-level...ize(l)));

ASSERTIONS

76

FILE SYSTEM

h-as-..exists(as, at);

EFFECTS

AND segment-size(s) + level-size(l)

-LENGTH(h..file_contents(n, 0)

> max-level-size~l)

=> lh_rileL_contents(n, 1)

=VECTORCFOR i FROM 0 TO segientsize~s) -1

hk_read~s, I, at));2

OFUN append to_riLe(name n; access_level wl; segment_number sn)

Caddress..space as; access-level all;

$(append the contents or a segment to a rile with name n)2

segment s IS hL_as~ntry~as, sn, at);

access_level 1 _

IS IF CARDINALITY~write-.name et~n, wI, at)) 1

THEN SOME access-level 1 INSET writeiame-.set~n, wi,

at)

ELSE ?;

EXCEPT IONS

h-as...entryovned~as, sn, al) ?;

s ? OR -readc..al owed (at, seg..access-leveL(s));

?(1

=X(read-allowed~al, L)

=> segment,_.size(s) +. level_size~i)

<= max_level_size~i)));

EFFECTS

AND segment~size~s) + leveL~size~l)

> max-level-size~l)

x> 'h~rile_contents~n, I)

xVECTORCFOR i.

FROM 0

TO LENOTHOh~rie...ontents(n, 0)

77

FILE SYSTEMI

+ segmeit_size(s) - 1:

IF 1. < LENGTH(k~fiLe.contents~n,)

THEN h-fiLe_contents(n, L)(il

ELSE h--read(s,

i-LENGTH(h_fiLe_coitents~n, 1)),

* END__MODULE

78

VIRTUAL MEMORY

MODULE virtualmemory

TYPES

address_space, segment: DESIGNATOR;

clearance: [INTEGER i 1 0 < i AND i <= max_clearance 1;

category_set:

{ VECTOR_OF BOOLEAN cs 1 LENGTH(cs) number_of_categories };

accesslevel:

STRUCT_OF (clearance securi tycl earance;

category set securitycategories;

clearance integrityclearance;

category-set integritycategories);

segment._number: (INTEGER sn 0 <= sn AND sn < segmentsper-as 1;

segmentbound: { INTEGER 1 1 0 <= i AND i <= max_seg_size 1;

offset: I INTEGER 1 0 <= i AND I < maxseg-_size 1;

name: {VECTOR_OF CHAR n 1 LENGTH(n) <= name_lengthl;

word: ONEOF(INTEGER, name, event, process,

wakeup, processor, address-space);

PARAMETERS "

INTEGER max_clearance $(the highest clearance)

number_of_categories,

segmentsperas $(the maximum number of segments in an

address space),

max-seg-size,

maxas(accessleveL at) $(the most address spaces

permitted at a level),

max-size(acoesslevel al) $(the amount of memory that can

be consumed at each Level),

initialas_size $(the size of the initial existing

address space),

79

"•- • - • o.. . • . -, •.

VIRTUAL M4EMORY

name_length $(the number of characters in a name);

VECTOROF word initial-_segment $(contents of initially -
existing segment)

DEFINITIONS

access _level initial_level

IS STRUCT(1,

VECTOR(FOR i FROM 1 TO number _of_categories: FALSE),

max_clearance,

VECTOR(FOR i FROM 1 TO number _of_categories: TRUE));

BOOL.EAN read__allowed(access_level subject .al, object..aL)

IS subject..al .security...learance

* >= object...a.securityclearance

AND subject,_a.integrity..clearance

<= object_al.integrity-clearance

AND(FORALL INTEGER i 0 < i AND i <= number_of...categories:

~>subject.al..securitycategories~i)

AND(subject.al .integrity-categoriestiI

=> object_at .integrity....ategoriesli]));

BOOLEAN write _at lowed(access_level subject..al, object-.at)

IS read_alowed(object..al, subject-.at);

access _level seg..access ~level(segment s)

IS SOME access_level 1

0~ EXISTS addressL-space as; segment-..number sn:

hL_as_entry~as, sn, 1) =s

AND h-a,...entryowned(as, sn, 0) TRUE

AND -(EXISTS access-level 11 1 readt-allowed~l, Ll):

* h_as_entry~as, sn, 11) = s

AND h1_as._entry..owned(as, sn, 11) TRUIE);

* INTEGER number-as(access-jevel at)

IS CARDINALITY({ address-space as I h-asexists~as, at)));
* INTEGER segment-size(segment s)

80

VIRTUAL MEMORY

is CARDINALITY(foffset i

h-read(s, i, seg..accessjlevet(s))-= ? D);

INTEGER total-as..size(addressspace as; accessjleveL ast)

IS SUM(VECTOR(FOR sn FROM 1 TO segments.per..as - 1

IF h_asLentry..owned(as, sn, ast)

THEN segmentsize(htLas...entry(as, sn, asM)

ELSE 0));

INTEGER total-size(SETOF addressspace sas)
IS IF sas =1

THEN 0

ELSE LET address_space as as INSET sas

IN total_as_size~as) +total..size~sas DIFF (asl);

EXTERNALREFS

FROM dispatcher:

event, process, wakeup, processor: DESIGNATOR;

ASSERTIONS

max-as~initiaLlevel) > 0;

segments..per..as > 0;

LENGTH~initiaL_segment) <= max_seg-size;

initiat_as~ize 4= max-_size(initial-level);

LENGTH~initial-segment) <= initial_as_size;

FUNCTIONS

VFUN h..as_exists(address..space as; 2aocessjlevel at) ->BOOLEAN b;

$(True It address space as is known to exist from level

HIDDEN;

81

ift

VIRTUAL M4EMORY -

INITIALLY

b = h_as _used(as, at);4

VFUN h_as _used(address_space as; access-level at) ->BOOLEAN b;

*True If' address space as has ever existed)

HIDDEN;

INITIALLY

CARDINALITY((addressspace as

th_as..used(as, initiat-levet)I)

AND (FORAL.L address-.space as;

access -leveL at at =initial-leveL:

Th..as..used(as, at));

VFUN h_assize(address _space as; access-level at) ->INTEGER i;

$(Number of' memory words in address space as)

HIDDEN;

INITIALLY

I (IF h-as _used(as, at)

THEN initial_as_size

ELSE ?);

VFUN h-as-entry(address,_space as;

segment..number sn;

access-level at)

-segment s; $(Returns the segment with segment

* number sn in address space as)

HIDDEN;

INITIALLY

IF h_as_used(as, aL) AND sn =0

THEN h-seg.,.used(s)

ELSE s ?;

82

VIRTUAL MEMORY

VFUN h-as -entry opwned(address ~space as;

segment -number sn;

accessL-level at)

-BOOLEAN b; $(True if segment owned by

K: address space as)
HIDDEN;

INITIALLY

b (IF has-ased(as, at) AND sn 0 THEN TRUE EISE ?);

VFUN h-seg..used~segment s) ->BOOLEAN b; $(True if segment s has

ever existed)

HIDDEN;

INITIALLY

CARDINALITY((segment s h...seg.used~s)}) 1;

VFUN h-read~segment s; offset i; access..level at) ->word c;

$(Returns contents of a word of a segment s)

HIDDEN; -

INITIALLY

C (IF hseg-used(s) AND reataltlowed(at, initial-level)

THEN initiat~segment[ii
ELSE?)

OVFUN create_addressspace(INTEGER as_size; access_level new..al)

Iaccess._level al]

->addressspace new..as;

$Creates a new address space at access level new_al

with size as_size)

EXCEPT IONS

write-allowed(al, new..al);

read-allowed(at, ne...al)

AND number as(new al) >= max..as(ne...al);

read_atlowed(al, new~a1)

AND total_size((addresss3pace as h..as..exists~as, new-..alV)

83

VIRTUAL MEMORY

+ as_size > max...size~new..at);

EFFECTS

h-asLused(ne..as, new-at) FALSE;

'h-as_used(new-.as, new-at) TRUE;
Cnumberas(ne...at) < max-..as~riew_at)

AND total-.size(address space as I h..as.exists~as, nex__al)I)

+ as-size <= max-size~new_at))

=> 1th_as_exists(neKwas, ne...al) = TRUE

AND 'has..size(newcas, ewat) =as-size;

OFUN delete_addressspace(adress.space o~cLas; accessjlevel asL)

Caccess....eve. at];

$(Deletes the address space as at Level ast)

EXCEPTIONS

write_aLlowed(aL, asL);

read_atlowed(al, asi) AND -h-as_exists~old~as, at);

EFFECTS

h_asL_exists~olcL-as, ast)

=> 'hX_as_exists(oldas, asi) =FALSE

AND (FORALL segment-.number sri

*h_as_entry..owned(olcLas, sri, ast) ?:

EFFECTSOF segmentdelete~sn, oltas, ast);

* . OFUN create...segment~addressspace as;

access_level ast;

segment_number sn;

* segment__bound 1;

VECTOROF word initial-contents)

(access_level at); $(Creates a segment with

* - segment number sri in

address space as) W

EXCEPT IONS

i < 0;

write_atlowed(at, ast);

readaLlowed(aL, ast) AND h_as_entry.owned(as, sri, ast) ?;

84

VIRTUAL MEMORY

readaLlowed(al, ast)

AND tota_as..size~as, ast) + i > h..as_size~as, asL);

EFFECTS

h...as..entry..owned(as, sri, asL)=?

AND total-as...size~as, ast) + i <= h~as_size~as, asL)

=>(EXISTS segment s:I

h....seg..used(s) =FALSE AND l'h-segused(s) =TRUE

AND 'hL-as...entry...owned~as, sri, ast) = TRUE

AND (FORALL access-leveL 1 1 read_atlowed~l, asL):
ILhkkas_entry~as, sri, 1) = s2

AND (FORALL offset j 10 <= j AND .1 < i:

'hk-read~s, .J, 0)

=(IF initial-contentsiL ?

THEN 02
ELSE initial_contenta~jl))));

OFUN deLetesegment(addressspace as; accesslevel ast;

segment-number sn)

[access-level at]; $(Delete segment sri)

EXCEPT IONS

write_atlowed(al, asl);

reac~allowed(at, asi)

AND t_as_entry~owned~as, sri, &0) ?;4

EFFECTS

h...as..entry..owned~as, sn, ast) -=?

=> 'h_as_entry..owned~as, sn, ast)z?

AND

(h..as..entry..owned(as, sri, asL)

=> (FORALL accesajleveL 1. 1 reataltlowed(l, asL):

th_as_entry~as, sn, ast) ?

AND (FORALL of fset i:0

'k~readhas..entry(as, sri, asl), 1, L)

85

VIRTUAL MEMORY

VFUN segment read(segment.number an; offset 1)

[addressspace as; access_level at]

-word a; $(Returns contents of word i of

segment sn)

EXCEPTIONS

h_asentry.owned(as, an, at) ?;

h_asentry(as, sn, al) = ?

h_read~has~entry~as, an, at), i, at) ?;

ASSERTIONS

h_as_exists(as, al);

DERIVATION

h_read(h...as..entry(as, sn, al), i, at);

OFUN segment-write(segment_number an; offset i; word c)

[address..space as; access-level al];

* $(Write data a into a word i of segment an)

DEFINITIONS

segment s IS SOME segment si (EXISTS access_level 1:

h...as..entry(as, an, 1) sl);,

EXCEPT IONS

h_aa...entry...owned(as, an, at) ?;

a - ? AND read-allowed(al, seg...access-level(s))

AND h_read(s, t, segacceslevel(s)) = ?

sa- ? AND reac~allowed~al, seg...access_level(s))

AND -write_allowed(al, segacces...leveL (a));

ASSERTIONS

h~as_exists(as, al);
A-~

EFFECTS

9 ? AND h_read(s, i, aeg...acceas..leveL(s)) ?

AND write_atlowed(al, seg...access.leveL(s))

=> (FORALL access-level 1I

read_al lowed(1, seg...accessjleveL (a)):

'lhread(s, 1, 1) a)

86

1 VIRTUAL MEM4ORY

OFUN get._.segment~address space sourceas;

accesselevel ast;

segment~number source _sn;

segment~number dest..sn)

(addressspace as; accessjleveL at];

$(Allow the segmient in address space source_as with

I number source sn to be accessed in the current address

space with number dest..sn)

EXCEPT IONS

read_allowed(al, asl) AND -h_as_exists(source.as, ast);

readLatlowed(al, asL)

AND h_asentry..owned(source~as, source..sn, asL) ?

h_as _entry~as, destsn, at) ?

ASSERTIONS2
has -exists(as, at);

EFFECTS

FORALL access_level 1

read-allowed~l, ast) AND readtatloved~l, at):4

'I_as_entry(as, dest_so, 0)

= Was..entry~sourceas, source_sn, ast);

'h_as_eqntry-owned(as, dest..sn, at) = FALSE;

OFUN segment__create Csegment..jmber sn;

segment_bound 1;

VECTO~k_..F INTEGER initial-_contents)

[address~space as; access_leve. at];

EXCEPTIONS

EXCEPTIONSOF create..segment~as, at, sn, i,

iritiat~contents, at);

ASSERTIONS

h-as_ ,cists(as, at);

EFFECTS

EFFECTSOF create-segment(as, at, an, i.,

initiat_contents, at);

87

0 VIRTUAL MEMORY

OFUN segment_delete~segment..number Sn)

Iaddress..space as; access-leveL at];

EXCEPT IONS I

EXCEPTIONS_OF detete-..segment(as, at, sn, at);

- . ASSERTIONS

h-as-exists~as, at);

EFFECTS

EFFECTSJOF delete~egment(as, at, sn, at);

ENDMODULE

88

SYSTEMI INPUT/OUTPUr

MODULE systen _io

PARAMETERS

BOOLEAN h_device_existsCINTEGER dew _md) $(true for existing
I/O device);

EXTERNALREFS

FROM dispatcher:

event: DESIGNATOR;

OFUN occurrence(event e) $CEvent e has occurred)

FUNCTIONS2

'IFUN h~device_event(INTEGER dev_ind) ->event e;j

$(Returns the event which can occur when device status
changes)

HIDDEN;
INITIALLY

e a?

VFUN h_input(INTEGER dev_ind) ->INTEGER data;

$(The current input from the device)
HIDDEN;

INITIALLY

data ?

89

SYSTEM INPUT/OUTPUT

VFUN h_output(INTEGER dev_ind) -> INTEGER data;

$(The next output to the device)

HIDDEN;

INITIALLY

data =?;

VFUN h_command(INTEGER dev_ind) -> INTEGER command;

$(The next command for the device)

HIDDEN;

INITIALLY

command =?;

VFUN h_status(INTEGER dev_nd) -> INTEGER status;

$(The current status of the device)

HIDDEN;

INITIALLY

status ?;

OFUN setevent(INTEGER dev_mnd; event e);

$(When status changes event e may occur) '

EXCEPT IONS

"h-deviceexists(dev-ind);

EFFECTS w7.

'h_deviceevent(devind) = e;

OVFUN read_device(INTEGER devind) -> INTEGER data;

$(Read data from ,device) 0

EXCEPTIONS

"h-devioe_exists(dev.ind);

h-input(devind) ?;

EFFECTS

data z hinput (dev_ind);,

'htinput(devind) ?;

to

-I - / * .. . -. . . . -. 7, , . -90"

SYSTEM INPUT/OUTPuT

09'UN write_deviceCINTEGER devind; INTEGER data);

$(Output data to device)

EXCEPTIONS

-t%_..devie..exists(dev_md);

tLoutput(dev,ind)

EFFECTS

'h-output~dev..ind) =data;

OFUN sendcommandCINTEGgR dev_hid; INTEGER command);

$(Give command to device)
EXCEPT IONS

'ii-device-.exists~dev-id);

h-command(dev-ind)

EFFECTS

'hkconmand~dev..ind) command;

'JFUN receive _statusCINTEGER dev-md) ->INTEGER status;

$(Get the devices status)
EXCEPT IONS

-tLdevice .. exists (de_mnd);

h..status(dev~jind)

DERIVATION

h...statusC dev..ind);

OVF'UN device_oputputo)(INTEGER dev_mndl ->INTEGER data;

$(Device reads data it is to output)
EXCEPTIONS

hr.output(dev..ind)

EFF'ECTS

datR t Ioutput(dev.ind);

'h..output(dev..ind) ?;

OPUN device..input(INTEGER data) (INTEGER dev _indJ;

$(Device places input data into input bufft.)

EXCEPT IONS

91

7777 777 7".

SYSTEM4 INPUT/OUTPUT

Ihinput~devind) ?;'*
EFFECTS

'kihinput(devjind) data; -5
OVFIJN device_commando [INTEGER dev..id >ITGRcMmad

$(The device gets a command)

EXCEPT IONS

h-command(dev..ind) ?

EFFECTS

4- ~command tLh..commaridCdev...ind);

'h....command(dev....ind) ?

OFUN change_statusC INTEGER status; BOOLEAN occur)

[INTEGER dev-idi; $(Reset the status of the

device)

EFFECTS

'h..status(devjind) status;

(occur AND h_device_event~dev..ind) ?)
=> EFFECTS_ OF ocourrence(L-deiee_event(dev..ind));

ENDNODULE

92

DISPATCHER

MODULE dispatcher

TYPES

process, event, wakeup, processor: DESIGNATOR;

machine_state: DESIGNATOR;

program_counter: INTEGER;

process-type: { iterative, demand, background };

processinfo:

STRUCT_OF(processtype type;

INTEGER next__servi-e;

INTEGER interval;

INTEGER duration;

INTEGER processing-remaining;

event ev;

wakeup wk;

program_counter pc;

machine_state ms);

PARAMETERS

INTEGER starttime $(time when system is initialized) ;

program_counter initat_pc $(the address of the first instruction

of the initial process);

machine_state initiatLms $(the initial register contents of the

initial process);

BOOLEAN processorexists(processor pr) $(true for all processors

on the system);

INTEGER max_iterative $(the marimum number of iterative processes),

max-_demand $(the maximum number of demand processes),

max_background $(the maximum number of background procs);

93

DISPATCHER

DEFINITIONS

BOOLIEAN time-critica...processC process p)

IS hprocess.info(p).type iterative

OR hprocessinfo(p). type =demand;

BOOLEAN process..ready(process p) $(TRUE if process p Ls ready to

run)

IS (time-critical.process(p)

=> h~process_info(p).next_service <= h_timeo)

AND -(EXISTS processor pr: t...running~pr) =p)

AND -(p INSET h-waiting-procso));

INTEGER proc...priority~process p) $(the scheduling priority of

process p)

IS IF p ?

THEN 0

ELSE IF time_cqriticaL-pr-ocess(p)

THEN IF h...process-info~p).processing..remaining < 0

THEN 2

ELSE 3 +CARDINALITY(

(INTEGER 11

EXISTS process p1

time_critica...process(p1):

i = h..process_ino~p).LntervaL

AND i. > h-process..ino(p).interval

ELSE 1;

VECTOROF process ready processes $(a list of all ready processes

in decreasing order of priority)

IS SOME VECTORJ.OF process rq

(FORALL process p 1process..ready(p):

6 EXISTS INTEGER i: rq~i] = p)

AND (FORALL INTEGER 1 1 0 < i AND i <= LENGTH(rq):

process_ready(rqt ii))

AND (FORALL INTEGER 1 1 0 < i AND i <= LENGTH(rq):

FORALL INTEGER j 1 0 < j AND j <= LENGTH(rq):

94

-A122 786 TACTICAL EXECUTIVE (TACEXEC): A REAL-TIME SECURE 2/2 \
OPERATING SYSTEM FOR TACTICAL APPLICATIONS(U) SRI
INTERNATIONAL MENLO PARK CR R J FEIERTAG ET AL. JUL 79

UNCLASSIFIED DARBB7-76-C-8368 F/G 9/2 N

smhhhhhhhhhhil
Ehhmhhhhhhhhuo

'. 10

INI 1225

so]

1.25J A11 1 1.6ul

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A .

j r

* * --C .. - .- - -7

.. :........ , t .3•s ..q

DISPATCHER

C(rq[i] = rq[J] => i J)

AND (proc-priority(rq[i]) > proc_.prority(rq iJ])

=> i < j));

VECTOROF processor preemptableprocessors

$(a list of all processors in increasing order of the

priority of the processes running on them)

IS SOME VECTOROF processor pq

(FORALL processor pr 1 processorexists(pr):

EXISTS INTEGER i: pq[i] = pr)

AND (FORALL INTEGER 1 1 0 < i AND i <: LENGTH(pq):

processor-exists(pq[ii))

AND (FORALL INTEGER 1 1 0 < i AND i <= LENGTH(pq):

FORALL INTEGER j 1 0 < j AND j <= LENGrH(pq):

(pq~i] pq~j] => i J)

AND (proc-priority(hrunning(pq[i]))

< proc-..priority~kirunningC pq(i)

=> i < j));

REAL processor_utilization(SETOF process sp)

IS IF sp A }

THEN 0.0

ELSE LET process p p INSET sp

IN hprocess_info(p). duration

/ (1.0 0 h-process_info(p).interval)

+ processorutitization(sp DIFF (p1);

REAL in_2 IS 0.693 $(natural logarithmn of 2);

7-1
4n

FUNCTIONS

VFUN h-process-exists(process p) -> BOOLEAN b; T(True if process

p exists)

HIDDEN;

INITIALLY

CARDINALITY({ process p h_proessexists(p) 1) : 1;

959
-. 95

4 9

DISPATCHER

VFUN h...process-info(process p) -> processjinfo p1.;

V(Returns scheduLing information about a given process)

HIDDEN;

INITIALLY

pi

=(IF h...processexists(p)

THEN STRUCT~baclcground,?,,?,,? ,

initia...pc, initial,_as)

ELSE ?);

VFUN h~running~processor pr) ->process p;

$(Returns the process running on the given processor, or

returns ? if the processor is idle)

HIDDEN;

INITIALLY

CARDINALITY((processor pr

h~process-exists(h..yunning(pr)) 1

AND(- rocess-.exists(h..yunning(pr))

=> h-.running(pr)

VFUN h_Waiting-.procsC) ->SET..OS process sp;

$(list of all waiting processes)0

HIDDEN;

INITIALLY

sp =0

VPUN h_event_exists~event e) ->BOOLEAN b; $CTrue if the event e

exists)

HIDDEN;

* INITIALLY

b =FALSE;

96

DISPATCHER

VFUN ku-wakeupexists(vakeup w) ->BOOLEAN b;

$true if wakeup w has been created)

HIDDEN;

INITIALLY

b FALSE;

VFUN h_t~ieo)- INTEGER time; $(Clock time)

HIDDEN;

INITIALLY

time start..time;

OVFUN create-process_identitiero) > process p; $(Creates a new
token for a

process)

EFFECTS

-..process-.exists(p);

'h-..process...exi sts(p);

OVFUN create-event()o event e; $(Create a new event type)

EFFECTS

h~event..exists(e);

'h_event_exists(e);

OVFUN create_wakeup()o wakeup, w;

$(creates a new wakeup, type)

EFFECTS
iuwakup....exiss~wP

-h~wakeup.exists(w);

OFUN block(BOOLEAN awaiting...akeup) (processor pr];

$The process running on processor pr wishes

to relinquish the processor)

DEFINITIONS

process p IS h_runnirig(pr);
EXCEPT IONS

97

. - _7

DISPATCHER

awaiting.yakeup AND h..process..ino(p).wk ?

-time_critical...process(p) AND -awaiting..wakeup;

EFFECTS

V 'h...hrunning(pr) = ready..processestl];
IF awaitingwakeup

THEN 'h...waiting.Jrocs() h_waitinL..procs() UNION (p)

ELSE

Ch...processino(p).type =iterative

=> 'h...processino(p).next-service > h-timeC)

AND 'h-..process-info(p).next_service

- .process-info(p).interva.

< h_timeo)

AND (EXISTS INTEGER n:

h-processL-info(p) .next,-service

+ n 0 h~process_info(p).interval

= h..process..iifo~p).next_ervice))

AND Cb...process info(p).type demand

=> 'b~rocess..ino~p).next_service ?)

AND ('1uprocess..info(p) .processing..reaining

-h..process..info(p) .duratioi);

OEFUN ticko; V(Time passes so increment the clock)

EF'FECTS V

FORALL INTEGER i

AND i <= IIIN((LENGTH (ready..pocesses),
* ~LENGTH(preemptabe..processors) 1

AND proc...priority(ready..processesE ii)

> procpriority~h..running(preemptable..processorst ii)):

'lhrunning (preemptabi e..processorst ii) =ready...processes(ii;

'b...timeo) z kutitae(+ I-,

FORALL processor pr

processor.e~ists(pr)

AND timeoritica...prooess(h~rurining(pr)):

'I--prooes..info(h-runrdng(pr)) .processing..remaining q

98

-I DISPATCHER

- prooess..info(h...running(pr)).processing..remaining 1;

FORALJ process p p INSET h..waiting~procs()

AND ti.._ritca..~process~p)

AND proc...priority(p)

> proc-priority(

hj'unning(

preemptabi e..proessors[J 1))):

'hprwocess_info(p) .processing-remaining

h...process-info(p).processingremaining -1;

OttUN schedule_iterative-process(process p;

INTEGER int;

* INTEGER dur;

INTEGER beg ixLtIme;

program_counter p..c;

machine_state m..s);

*Permit the process p to be scheduled and run as an

iterative pro '.55)

EXCEPTIONS

int <dur;

dur < 0

begin-..time < h-timeo;

CARDINALITY((process p h-~process-info(p).type, 2Iterative))

>= muxiterative;

ASSERTIONS

processor-..utiizationCtprocess p 1 time-critica...prooess(p)))

+ dur /(1.0 * int)

< 1zt.2 CARDINALITY(processor pr 1 prooessor...exists(pr)));

EFFECTS

'h.prooess_info(p)

2STRUCT(Iterative, begin..time, Int, dur, dur, ?

2,p..c, M....);

99

DISPATCHER

OFUN sochedul e_demandUproc ess (process p;

INTEGER min~period;

INTEGER dur;

event e;

program-..counter p....;

machine_state m~s);

$Permit the process p to run whenever event e occurs)

EXCEPTIONS

-h..process...exists(p);

min...period < dur;

dur < 0;

CARDINALITYC[process p 1 W..processino(p).type demand))

>= max_demand;
ASSERTIONS

processor_utilization((process p 1time-critical-process~p)1)

+ dur / (1.0 * min-period)

< in_2 'CARDINALITY((processor pr processor exists(pr) 1);
EFFECTS

-STRUCT(demand, ?, min_.period, dur, dur, e, ?,P..0, in..3);

OFUN schedule_background~process(process p; program_counter p...; -

machine-state m-..s);

- . $(Permit process p to run whenever there is time
available)

EXCEPT IONS

-hprocess-exists(p);

CARDINALIT!(fprocess p 1 h-process-info(p).type background))

>z max_background;

EFFECTS

'h...process..into (p)
-STRUCT(background, ?I ?q ?q ?t ?q ?q Pc,9 m-3..);

100

N.

DISPATCHER

OVPUN stop-..processC process p)

-STRUCTJOF(program-counter pa; machine-state mns) state;

$(stop scheduLing the given process p)

Th...processexists(p);

h...processinfo(p) ?;
EFFECTS

lh...processinfo(p) ?
state =STRUCT(h-processjinfo(p).pc, h...process_into(p).ins);

OF'UN ocourrence~event e); V(Wake up processes waiting for event e)

EF'FECTS

FORALL process p 1 hprocess_info(p).ev = e:

'h-process-info~p).next_service =h_tiineo;

OFUN wait(wakeup w)[processor pr);

V(tell system that this process wants to wait for wakeup w)

EXCEPT IONS

h-wakeup-.exists(w);

EFFECTS

'h...process.info(hrunning(pr)).wk w;

OFUN continueol~processor pr];

$(this process no longer wants to wait)
EF'FECTS

'h...process..info(h~.running(pr)).wk ?

OF'UN notify(wakeup, w);

$(wake up all, processes waiting for wakeup w)
EXCEPT IONS

-h...wakeup.exists(w);

EF'FECTS

LET process p 1 hprocess..info(p).wk w

IN p -z ? z> h~roesinfo(p).wk a

AND 'ttwaitig...procs()

101

DISPATCHOR

h-kwaitingprocs() DIFF (p);

ENDJ40DULE

102

Appendix B

Specifications of M~essage Syst~em

103

Appendix B

Specifications of M4essage System

MODULE message..systeu
$(provides a primitive system for the transmittaL of
messages (vectors of words) between named users. The
transmission adheres to the muLtiLeveL security ruLes)

TYPES

userid: DESIGNATOR;
cLearance: I INTEGER i1 0 < i AND i <= max-cLearance 1
categoryset:

* (VECTOR_OF BOOLEAN as 1 LENGTH(cs) =number _of _categories 1;
accessileveL:
STRUCTOF CcLearance securi ty...cLearance;

category..set securi tycategories;
cLearance integrity.ciearance;
category_set Lntegrity...ategories);

*segment...umber: (INTEGER sn 10 <= sn AND sn <= max..segsize 1;
offset: {INTEGER I. 0 <= i AND i <= max_seg-.size 1;

* name: I VECTORO.F CHAR n IL.ENGTH(n) <= namejength 1;
msg..word: ONEOF(INTEGER, name);

PARAMETERS

INTEGER max_cLearance $(the highest cLearance)
number_of_categories,
namej ength $(the number of characters in a name)
max...sr~ceslvLa) $ the most users permitted at a

LeveL),
4max~jnsg..size(access_leveL aL) $(the amount of memory that

can be consumed by a user at
a LeveL for messages),

maxjnessages(accessjleveL aL) $(maximum number of messages
* that a user at given LeveL

can receive);
userjid sec..offLcer $(designator for security officer) W
name name-sec-officer $(name for securLty officer)

DEFINITIONIS

BOOLEAN read~allowed(access-leveL subject..at, objectal)K IS subject.at .security..clearance
>= object,_at.security~ctearance

AND subject al.tntegrity..clearance
<= object_at.integrityctearance

AND(FORALL INTEGER 1 1 0 < i AND i <= number....f categories:
(objectal .securitycategories~iI
=> subject,_at .security-..categories~i])

AND(subject,.al.integrity..categories~iI
=> object_at .integrity..categoriesE i]));

BOOLDEAN writeatlowed(access~jevel subject~al, object,.at)
IS read-.allowed(objectal, subject...at);

BOOLEAN authorized~level~user_id usid; accessL~leveL at)
IS EXISTS name n; access_level all Itread...atlowed(atl, at):

user _exista~usid, n, atll);
access_level aLO

IS STRUCT(l,
VECTOR(FOR I FROM I T0 number-por_categories: FALSE),
max_clearance,
VECTOR(FOR i FROM 1 TO number_of_categories: TRUE))

$V the lowest access Level);

EXT ERNALR EFS

FROM vi rtuat~juemory:
INTEGER max-.seg-.si ze;
address_space, segment'. DESIGN4ATOR~;
VFUN hasentry-ownedC addressspace as;

segmentnumber sn;
access~level at)
->BOOLEAN b;

VFUN nasentryC address_space as;
segmentnumber sn;
accessjlevel at)
->segment s;

VFUN h_read~segment s; offset i; acoess_1evel at) ->msg..word c;

ASSERTIONS

FORALL access_level at: max-users~al) > 0;

FUNCTIONS

VFUN user-exists(user..id usid; name n; access_level at)
-BOOL.EAN b; $(True if user with id and name

exists at Level at)
HIDDEN;

105

INITIALLY
(FORALL access_level at:

user-exists~sec_officer, namesec_officer, at))
ANDCFORALL user_id usidi - sec-offLoer;

name n1i- name_sec_opff Lcer;
access_leveL all:

user _exists(usidl, ni, all)

VFUN user-ever-existed~user _id usid; access-levet at) ->BOOLEAN b;
$(TRUE If a user ever existed at a given level) a

HIDDEN;
INITIALLY

(FORALL access_level at:
user_ever_existed(secofficer, at))

VFUNOAL usrj sd =scofcr access_level at:

ueever _existed~usidl, at)?;

$(cntets f te ith bssge entto user usid at
level at. The message is a vector of msg-word)

HIDDEN;
INITIALLY

mu ?

OF'UN create-user~name n)I(user_id usid; access_level at];
$(invoked by the security officer, presenting the proper
user_id, to cr-eate a new user with name n, who canNW
operate at all levels not excleeding at)

EXCEPrIONS
not,_secur.".y_officer: usid -=sec_officer;
too.jany~users: EXISTS accessjeveL all readt_atlowed~at,

all):
CARDINALITY({ name iii

EXISTS user_-id usidi: user....exists~usidl, ni, all) 1
>= max-users(all);

duplicatename: EXISTS user _Id usidi:
user_eoxists(usidl, n, ala);

EFFERCTS
EXISTS user_id usidi:

*FORALL access_level all 1 reacL~allowed(al, all):
user _ever -existed(usIdl, all)=?

AND 'user_ever_exIsted(usidl, all) =TRUE
AND 'user-..exists(usidl, n, all) TRUE;

OFUN delete-..user(name nl)(user.id usid];

* $(invoked by the security officer to delete a user n,
including all of his mailboxes at all levels)

EXCEPT IONS
not-securlty..officer: usid sec_officer;
no-user: FORALL accesajlevel al; user..id usldl:

user_exIsts(usidl, nl, at) =?;

106

.... .. - - ---

EFFECTS
LJET user_id usidl EXISTS access...evei "-I:

user...exists(usldi, ni, at)
IN FORALL access_levet all:

'user~exists~usidl, ni, all) ?;

OFUN snd.~isg(segment_number sn; name ni; access_level all)
[user _Id usid; address,space as; access_level al];
$called by a user operating at at in address space as
to send a message to user n at all. The message is the
contents of segment sn)

DEFINITIONS
user _id usid3

IS SOME user_id usid2 1 user....exists(usid2, n, at);
INTEGER m

IS MAX((INTEGER j 1 j -
AND msg..contents(usid3, at, J) -= ?

segment s IS SOME segment sl 1 hasentry(as, sn, at) si;
EXCEPT IONS

-authorized-level~usid, at);
write..allowed(al, all);

h_a4s_entry..owned~as, sn, at) ?
h_as _entry~as, sri, at) =?
read__atlowed~al, all)

AND(FORALL user_id usid2: user-exists(usid2, n, all)
read_atlowed(al, all)

AND CARDINALITY(f INTEGER 1i msg-contents(usid3, al, 0)

>= max~jnessages(al);
read atlowed(al, all)

AND CSUMCVECTOR(FOR 1. FROM 1 TO m
LENGTH(msg-contents(usid3, at,)))

>= max~jnsg..size(at);
EFFECTS

(EXISTS user_id usidi: user_exists(usidl, ni, all)) i~
AND(CARDINALITYC(INTEGER 1. 1 msg...contents~usid3, at, 0)

>= maxjuessages~al))
AND (SUMCVECTORCFOR 1. FROM 1 TO m

LENGTH(msgcontents(usid3, at, MM))
>= max~jnsg.size~at)

=> 'ms&gContents~usid3, at, M + 1)
VECTOR(FOR i

FROM 1
TO MAW(INTEGER j 1tk-read(s, J, at) =? I
h_read~s, i, at));

VFUN readunsg(INTEGER i)[user..id usid; access_level all
-VECTOR_OF msg..word mw; $(allows a user to read

the i-th message in his
mail box at at)

EXCEPTIONS

107

user_is _deleted: FORALL name n:
user_exists(usid, n, at) ?;

no-mpessage: msg..ontents(usid, aL, J) ?;
DERIVATION

msg....ontents(usid, at, L);

OFIJN deLetejnsg(INTEGER i)[user..jd usid; access_leveL at];
$(allows a user to delete the i-th message in his mail
box at at)

EXCEPtIONS
user_is_deleted: FORALL name n:

user_exists(usid, n, aL) ?;
no__nessage: msg..contents(usid, at, L) z ?

EFFECTS
FORALL INTEGER J:

'usg..contents~usid, at, j
=(IF j INSET 1 0 .. i.

THEN msg...contents~usid, at,)
ELSE msg...contents~usid, at, j +1));

ENDJNODULE

108

Appendix C

MULTILEVEL SECURITY RULES

109

Appendix C

MULTILEVEL SECURITY RULES

1. General odel

A system consists of a collection of operations or functions. Each
function may be invoked by a user of the system (actually the function
is invoked as part of a program running on beha'f of a user). When
invoked, a function may take a set of arguments. A function together
with a particular set of arguments is termed a function reference. When
a function reference is invoked, it can cause the state of the system to
change and/or return information to its invoker. The set of all
function references of a system is called F and some member of this set
is denoted by f.

We also define a set of security and integrity Levels L. The
security and integrity Levels L are partially ordered by the relation
"<". Multilevel security involving classifications and categories is
but one example of a partial ordering of security and integrity Levels,
so we will be dealing here with a more general case. There are
functions K and I whose domain is F and whose range is L. The functions
K and I return respectively the security and integrity levels of their
argument. A process is assigned a security Level and an integrity Level
for its Lifetime and may only invoke function references at these
Levels. (Note that a user may have several processes operating on his
behalf simultaneously, and may therefore operate at several security and
integrity Levels.)

Finally, we introduce the relation "-->" on function references.
We say that

f1-->f2

(read as fl transmits information to f2) if there is any possibility
that the information returned by an invocation of f2 could have been in
any way effected by a prior invocation of f1" In other words, there is
some transmission of information from fl to f2 "

The definition of multilevel security can now be stated simply.
For any f, and f2 in F:

fl-->f2 ==> K(f1) <= K(f2) AND I(fl) >= I(f2) (P1)

This simply states that if there is any possibility of information
transmission between two function references, then the transmiLting --
function reference must have a security Level less than or equal to the
that of receiving function reference, and the receiving function
reference must have an integrity level less than or equal to that of the
transmitting function reference.

110

In other words, information can only flow upward in security or
remain at the same Level. An alternative definition is given in 13].
SimiLarly, information can only flow downward in integrity or remain at
the same Level.

UnfortunateLy, the abstract nature of this definition makes it
difficult to reLate to constructs used in expressing system designs.
This gap can be bridged by formulating a slightly more restrictive model
in Less abstract terms.

2. Restricto Modelt

Each state variable v contains some of the state information of the
system. The state variables together completely describe the state of
the system. The value of each state variable may be modified by
invocation of some function reference. Each state variable is assigned
a security Level and an integrity Level which is determined by extending
the functions K and I to apply to state variables as well as function
references, therefore, K(v) is the security Level of state variable
and I(v) is the integrity level of state variable v. The relation -- >

relates two state variables such that

Vi -f> v2
means that an invocation of function reference f may cause the value of
v2 to change in a manner dependent upon the previous value of vI . In
other words there is an information flow from v1 to v2 caused by the
invo~ati ')f f. Two predicates must also be defined: the prefix form
of -- >

-r> v

means that an invocation of the function reference f may cause the value
of state variable v to change; the postfix form

v ->

means that the value returned by function reference f is dependent on
the prior value of state variable v. Note that for any fl, vl, and v2 :

Vi 'S> v2 ==> -- > v2

A multilevel secure system may now be redefined. For any function
reference f and state variables v, v1 , and V2

fU
v --> ==> K(v) <% K(f) AND I(v) >= I(f) (P2a)

v1 -S> v2 => K(v1) <= K(v2) AND I(v 1) >= I(v2) (P2b)

-> v :=> K(f) <s K(v) AND I(f) >z I(v) (P2c)

111

rV

4]

These properties assure that information flow is always upward in
security Level, downward in integrity Level, or remains at the same
security or integrity level. Loosely speaking, the arrow -- > always
points upward in security Level and downward in integrity Level. P2a
states that the value returned by an invocation of a function reference
at some security and integrity Levels contains information from state
variables at onLy Lower or equaL security Levels or higher or equaL
integrity LeveLs. P2b assures that when information is transferred from
one state variable to another by some invocation of a function
reference, that the recipient variable is at a higher or equal security
Level or Lower or equal integrity Level than the originator variable.
P2c assures that the value of a state variable may be changed by
invocation of a function reference whose security level is Less than or
equal to or whose integrity Level is greater than or equal to that of
the variable, thereby guaranteeing that security cannot be violated by
the act of invoking a function reference. An alternative definition is
given in 3.

3. Formal Definitions oC Relations andj Predicates .. .

A multilevel system is defined to be the following ordered 10-

tupLe:

<S, so, L, "<", F, K, I, R, Nr, Ns >

where the elements of the system can be intuitively interpreted as
follows:

S - States: the set of states of the system

So - Initial state: the initial state of the system; so 4 S - 1
L - Security levels: the set of security levels of the system

"<" - Security relation: a relation on the elements of L that

partially orders the elements of L

F - Visible function references: the set of all the externally
visible functions and operations (i.e., functions and
operations that can be invoked by programs outside the

system); if a function or operation requires arguments, then
each function together with each possible set of arguments is
a separate element of F (note that in this document externally

visible functions and operations will be referred to
collectively as visible functions (or functions) even though
operations are not functions in the mathematical sense)

K - Function reference security Level: a function from F to L
giving the security Level associated with each visible

function reference; a process may invoke only function
references at the security Level of the process; K:F->L

I - Function reference integrity Level: a function from F to L
giving the integrity Level associated with each visible
function reference; a process may invoke only function
references at the integrity level of the process; I:F->L

112

R - Results: the set of possible values of the visible function
references

NrNs - Interpreter: functions from FXS to R and S that define how a
given visible function reference invoked when the system is in
given state produces a result and a new state; Nr :FXS->R and
N :FxS->S.

There is also a set of state variables V, each member of which is the
set of values can be assumed by that state variable. The set of states
S is isomorphic to the cross product of all the state variables v4V.

In order to define multilevel security and integrity, the following
definitions are useful:

T - the set of all n-tupLes of visible function references or, in
other words, all possible sequences of operations

T =F

M - the function whose value is the state resulting from the given
sequence of operations starting at some given state

M:SXT->S

D - the function whose value is the set of state variables whose
values differ in the given states

D: SXS->V•
The two relations and two predicates described above can now be formally
Jefined:

1 -- > f 2 <=>

(4 I. 1' 4T)

Nr(f 2,M(t2,M(<fi>,M(t1,so))))

- Nr(f 2 ,M(t2 ,M(t1,So)))

V1 -f> v 2 <==> -,

(;S 1 ,s 24S D(sj,s 2)={v 1 })
v24D(Ns(f,s 1) Ns(f',s2))

v -f> <==>

(;s 1 , s 2 <s jD (s 1 , s 2) = { v })

Nr(f, s1) -= Nr(f s2)

-r> v <==>

(;s4S)

v4D (s, Ns(f,s))

113

{l-

Appendix D

SAMPLE MULTILEVEL SECURITY PROOF

115

.1

Appendix D

SAMPLE MULTILEVEL SECURITY PROOF

The actual state of the system is described by the "primitive" V-
functions, 1. e., functions that return the value of a particular state
variable of the system. The primitive V-functions are descriptive
artifacts of the specifications and need not be present in an
implementation. The valui of a primitive V-function may be available to
a user of the system if there is a visible V-function that returns the
value of the primitive V-function. The values returned by visible V-
functions are functions of the values of only the primitive V-functions.

The specification of each visible function has two major parts.
* The first part is the EXCEPTIONS, a list of boolean valued expressions.

If any of these expressions evaluates to true for a given invocation of -

a function, then the function is aborted with no change of state to the
system. The values of these exceptions are results of the function
invocation since the occurrence of an exception is reported to the
caller of the aborted function.

- .For a visible V-function, the second part of the function
specification is the DERIVATION, -in expression whose value is the result
of the V-function. The value is returned only if all the exceptions of
the V-function invocation are false. For an 0- or OV-function, the
exceptions are followed by the EFFECTS, assertions that relate the
values of the state variables (primitive V-function references)
subsequent to the invocation of the OV-function to the values of the

* state variables prior to the invocation of that OV-function. Subsequent
values of state variables are denoted in effects by preceding the
primitive V-function references corresponding to those state variables
by a single quote ('). Prior values are unquoted.

Note that there is a very strong correlation between the model
underlying the semantics of SPECIAL and the model of a system used to
describe the strong multilevel security properties, P2. The state

*variables, V, of the security model are references of the primitive V-
1W functions of SPECIAL and the function references, F, of the security
* 7model are references of the visible functions of SPECIAL. The values of

function references of the security model are the return values and
*exceptions of the visible functions in SPECIAL. We have also added a

convention that prescribes that each primitive function reference of a
.PECIAL specification contain a formal parameter that is the security
and integrity levels of that function reference. For visible V-
functions, the security and integrity levels of a function reference are
implicit arguments enclosed in square brackets V-. 1) after the formal
parameter list. The properties P2a, P2b, and P2c can, therefore, be
directly applied to specifications written in SPECIAL.

116

There are two difficulties that make proof of the consistency of
the specifications and the properties P2 nontriviat. First, the
specifications are written in terms of function descriptions, not
function reference descriptions. This means that one must prove that
the properties P2 hold for all possible arguments to the functions
described in the specifications. In many cases some sets of arguments
to a particular function must be considered as distinct cases in order
to make the proof tractable. The appropriate partitioning of cases
requires careful judgment. Second, in describing the change of state
caused by an 0- or OV-function invocation, SPECIAL permits considerable
freedom in expressing the relation between the new values of the
primitive V-function references and their prior values. The use of

recursive functions and universal and existential quantifiers makes it
undecidable, in general, to determine if a new value of a primitive V-
function reference is functionally dependent upon the prior value of
some other primitive V-function reference. Since functional dependency
is generally undecidable, we have derived a set of decidable dependency
rules that are used to determine if the value of some quoted primitive 2.
V-function reference (new value of a state variable) is functionally
dependent upon some unquoted primitive V-function reference (prior value
of a state variable) for the most common of the decidable cases. When
these rules cannot be definitively applied, a functional dependency is
assumed. These rules are similar to the elimination rules of [4]. For
the specifications we have examined, we have had no difficulty in
deriving an acceptable set of such rules. The example given later
illustrates the proof technique and utilizes a particularly simple set
of these decidable dependency rules. In order to illustrate the proof
technique, a proof of two representative operations wiLl be presented.
The operations whose security will be demonstrated are SEGQENTPEAD and
GET.SEGMENT in the module VIRTUAL._MORY. These operations may be
considered representative in style, size, and complexity of operations
in the TACEXEL design, being perhaps a Little simpler than most. The
proof of properties P2a, P2b, and P2c require the identification of all
instances of primitive V-function references within the operation to be
proved. Many such instances are enclosed in the macro facilities of
SPECIAL (namely the DEFINITIONS, EXCEPTIONSO?, and EFFECTSW.O) so those
macro definitions containing primitive V-function references must be
expanded. However, no such expansions are necessary for the sample j
operations. -

Each function reference must be assigned a security and integrity
level, collectively called an access level. In order to guarantee that
the Levels of function references do not change (a requirement of the
multilevel model), one of the arguments to each function reference will
be its access level. By convention, the access level argument wilt be
the formal parameter in the definition of the function that is named
"at". (Note that this choice of access level is arbitrary; an incorrect
choice may cause the proof' to fail, however it is never possible to make
a choice that wilL cause the proof to succeed for an insecure system.)
The relation "<=" is defined for access Levels by the definition
"write_allowed" and the relation ">=" is defined for access Level by the
definition "readallowed".

117

-I

The next step in the proof process is to generate a set of theorems
whose validity implies properties P2a, P2b, and P2c. These theorems are
derived from the specifications using knowledge of the syntax of SPECIAL
and the decidable dependency rules (which embody the semantics of
SPECIAL). An examination of these theorems serves to illustrate the
theorem-generating step of the proof process. The theorem for the
operation SEGMENT_READ is:

FORALL sn, i, as, al: read_atlowed(al, at)

Properties P2a, P2b, and P2c must be proved for each visible function
reference, i.e., the proof must be carried out for all possible set of
arguments, hence the universal quantification of all the arguments in
the theorem. In actuality, six theorems are generated from
SEGMENT_READ, one for each primitive V-function reference, but they are
all identical.

Consider first the exceptions. Recall that the value of an
exception is a result of a visible function, so it is necessary to
identify all primitive V-function references (state variables) upon
which the values of the exceptions are dependent and prove that their
levels are Less than or equal to level of SEGMENTREAD. All the
primitive V-function references in the exceptions are at level "at" and
the level of SEGMENT_.EAD is also "at", so we must prove that at<=al.
This is the what the theorem above expresses and it is obviously true
from the definition of read_allowed.

Next we must consider the derivation of SEGMENT_READ. The value of
the derivation is also a result of the function, so again we must
identify all the primitive V-functions in the derivation and prove that
their level is less than or equal to the level of SEGMENT_READ. Again
all the primitive V-functions have level "at" and the same true theorem
obtains. Since this operation is a V-functions and there is no change
of state, properties P2b and P2c do not apply. This completes the proof
of SEGMENT_READ.

The proof of SEGMENT_READ is fairly simple because all the
primitive V-functions referenced in SEGMENT.READ are at the same . -

security level. We did not even consider if an exception or result is
dependent upon a particular primitive V-function reference, we simply
assumed the worse case that if a primitive V-function appeared in an
expression, then the value of the expression was dependent on the value
of that primitive V-function reference. In the next example,
GETSEGMENT, the proof is not so simple and it is necessary to consider
more carefully whether or not there is a transmission of information
from some primitive V-function reference.

Consider first the first exception of GET_5EGMENT. In this
exception there is a reference to HASEXISTS. Note however, that the
value of the exception is dependent on the value of the reference to
H_.AS_.XISTS only if the readallowed(at, ast) is true. If
readallowed(at, ast) is false then the exception is false no matter
what the value of the reference to HASXXISTS. This leads to the
following theorem:

118

Wa

FORALL sourceas, ast, source_sn, destsn, as, al:
read_allowed(al, asl) => reaLallowed(at, ast)

The consequent of the implication is the normal check for the security
level of the function being higher than the security Level of the state
variable (property P2a). The antecedent of the implication qualifies
the check for those cases where it matters. This theorem is trivially
true. The second exception yields the same theorem for the same reason.

The third exception yields the following theorem in the normal
manner:

FORALL sourceas, ast, source_sn, dest.sn, as, at:
read_atlowed(at, at)

which is true from the definition of readallowed.

Now consider the first effect of GET_SEGMENT. In order to
demonstrate property P2b we must show that the level of the modified
primitive V-function reference to H_.ASENTRY is greater than that of the

unmodified primitive V-function reference to H_AS_ENTRL Again we need
consider only the cases in which there is actually transmission of
information, so the following theorem results:

FORALL sourceas, asl, source_an, dest-.sn, as, al:
FORALL L:
readallowed(l, ast) AND reacLatlowed(l, at)
=> read_atlowed(l, ast)

which is triviaLly true.

To show property P2c we must prove that the level of all modified
primitive V-function references is greater than the level of the
reference to GET._SEGMENT. There are modified primitive V-function
references to H__AS._ENTRY and HAS3NTROWNED. For H__AS_4ENTRY we
consider only the relevant cases yielding: 04

FORALL sourceas, ast, source_sn, dest-sn, as, at:
FORALL 1 :

read_allowed(l, as) AND reacLallowed(l, at)
=> readLallowed(l, at)

which is trivially true. For H_AS_ENTRY_OWNED the resulting theorem is:
FORALL sourceas, ast, sourcesn, dest-sn, as, at:
read_atlowed(al, at)

which is true from the definition of read_allowed.

A simple upper bound can be placed on the number of theorems
generated for a given visible function. Using the following
definitions:

nxv the number of citations of primitive V-functions in the
exceptions

119

• ° • .

nqv = the number of citations of quoted primitive V-functions in the
effects

nuv = the number of citations of unquoted primitive V-functions in
the effects or derivation

the number of theorems generated will be at most

nxv + (nqv + 1) * nuv + nqv

For the SEGMENT_READ operation this upper bound is 6 and for the
GET_SEGMENT operation this upper bound is 8. In these cases the failure
to reach the upper bound is due to the absence of a return value (other
than the exceptions) and that some of the theorems happen to be
identical and have not been replicated.

It is important to realize that this particular example is probably
smaller than the proof of a typical visible function in a system such as
TACEXEL. A more representative example is likely to contain more
DEFINITIONS, EXCEPTIONSOF, and EFFECTS_OF expressions that contain
citations of primitive V-functions thereby yielding a much greater
number of such citations in the expanded form of the function
specification, hence a much greater number of theorems. In fact, the
listing of theorems is undoubtedly going to be much longer than the
listing of the specifications from which the theorems are derived. The
saving grace is that the proofs of the theorems are rather simple and
are amenable to automation.

1

U"

120

Appendix E

PERMISSIBLE PROCESSOR LOADINGS -

* 40

121

Appendix E

PERMISSIBLE PROCESSOR LOADINGS

This appendix examines three scheduling algorithms to determine the
processor loads which can be sustained without risk that any task cannot
be serviced within its time constraints. Subsequent work should
consider the effects of scheduling overheads and extend the analysis to
other workloads and scheduling algorithms.

1. Deadline ScheduLin.

For this analysis nothing is assumed about the nature of the tasks
to be performed except that:

a) for each task there is a known deadline by which the task must be
completed,

b) the processing of any task may be preempted should it be
appropriate to process another task,

c) the tasks may be processed at any time between their initiation
and their deadline, and thus tasks may not block each other by
semaphores or other mechanism.

Scheduling overheads are assumed to be zero. The analysis makes no
assumptions about the periodic repetition of tasks, about foreknowledge
of the processing requirements of tasks, or about the possible future
demands of other tasks.

The deadline scheduling algorithm to be analysed selects, from
amongst those tasks available for processing, that task whose deadline
is the earliest. It will be shown that if, for any particular
combination of tasks, the deadline scheduling algorithm is unable to
schedule tasks so as to complete all of them within their respective
deadlines, then there does not exist any schedule which is able to
complete them all.

Consider a pattern of tasks such that one task cannot be completed
before its deadline. From this pattern, select a critical subset of
tasks by recursive enumeration, using the rules:

a) the task which cannot be completed within its deadline is a member
of the set,

b) any task, such that at the time at which its processing is
completed some other task of the set awaits service, is a member
of the set.

Note that during the interval from the earliest initiation of a member
of the set to the deadline of the failing task there must always be at
least one member of the set being processed or awaiting processing.

122

U

Thus within this interval there can be no idle time and no processing
performed for any task whose deadline is Later than that which was
failed.

Consider this interval. The set of tasks is a set all of whose
processing must be completed within the interval. The whole of the
interval is allocated to processing for these tasks, and yet processing
remained at the end of the interval. Thus the total quantity of
processing required during the interval exceeds the length of the
interval, and there can be no arrangement of processing which can
complete it in time.

Thus if, for any particular combination of tasks, the deadline
scheduling algorithm is unable to schedule tasks so as to complete all
of them within their respective deadlines, then there does not exist any
schedule which is able to complete them all within their respective
deadlines The corollary of course is that if there exists any schedule
which can complete all the tasks, then the deadline schedling algorithm
suffices to find such a schedule.

.:'.2. Priority Scheduling of Peioi Tasks '::

For this analysis, it is assumed that the tasks of the system are
activated on a regular periodic basis, and that each task must complete
its processing before the next activation of that task is due. It is
assumed that tasks may be scheduled to be run at any time within thi.
period, that preemption is permitted, and that the scheduling overhead
is zero.

The priority scheduling algorithm to be ar.alysed selects, from "4
amongst those tasks available for processing, that task whose repetition
period is shortest. It wilt be shown that a particular pattern of task
periods and activations represents a local most difficult case and that
scheduling on the basis of repetition period permits the highest loading
for this pattern. It is shown that for this local worst case the
processor may be loaded upto ln(2) of capacity without risk of any task
failing to complete within its repetition period. - -

It is believed that the bad patterns of tasks occur when all the
tasks of the system are activated at the same moment in time, and when,
for each task except that with the shortest period, the period of a task
is equal to its own processing time plus the period of the next shorter
period task. An example of such a bad pattern is given in Figure E-1.
Contrary to intuition, the pattern in which all tasks must complete
before the same moment in time, shown in Figure E-2, is not a bad
pattern. Figure E-3 shows that the deadline algorithm described above
can schedule a bad pattern for which the priority algorithm can find no
schedule.

It is believed that the worst case pattern occurs when the
processing times for all tasks are in equal proportion to their periods.
White this proportion tends to zero as the number of tasks in the
pattern tends to infinity, no demonstration is available that this
pattern is a global worst case. It can only be shown that each change

123

[.U

..........

in the pattern permits a higher processor utilization, indicating that
the pattern is a Local worst case.

Consider a pattern similar to that of Figure E-1 with n tasks
processed and task n+1 unprocessed. If the period of the shqrtest
period task is a then its processi requirement must be a(2 /n-1) while
the period of the next task is a(2 n). The period of each task in the
series increases in the same proportion until the period of task n+1 is
a(21/nn = 2a. The processor Load is

n(21 /n"2)1

n(etn(2)/ n- 1)

- n(1 + ln(2)/n + ln(2)2/2n2 + ln(2)
3 /3tn 3 + ... -1)

- ln(2) + 0(1/n)
Thus the permissible Load decreases monoticatly as n increases with a
Limit of ln(2) (-0.693). If the worst case pattern of tasks can be
processed using the priority scheduling algorithm, provided that the
processor Load does not exceed ln(2), then any pattern of tasks can be
processed using the priority scheduling algorithm provided load does not
exceed ln(2) (approximately 0.693).

3. Simly Periodic ScheduLing

The bad cases for the priority scheduling of periodic tasks arise

because the arbitrary periods of the periodic tasks allow the relative
phasing of those tasks to change until a bad case is builtup. If the
periods of the tasks are constrained to be simple multiples of each
other, this effect can be avoided and higher processor utilizations can
be permitted.

We define a simply periodic system to be one in which each period,
other than the shortest, is an integral multiple of the next shorter
period, and initialy all periods start simultaneously. Several tasks
may be run at each of these periodicities. The scheduling aLgorithm
selects at all times tasks of the shortest period which still require
processing. An example of a simply periodic system is given in Figure
E-4.

Simple inspection shows that provided the Load on the system does
not exceed the capacity of the processor, the simply periodic system can
complete all tasks within their periods. This high processor
utilization is, however, to some extent misleading. Because of the
limited set of periodicities at which tasks may be run, some tasks may
be run more frequently than the application really requires. If the
required processor Loading is uniform over task period, then conversion
to a simply periodic system is equivalent to restricting the processor
Loading to 0.75. If the required processor Loading is negative
exponential over task period, then conversion to a simply period system
is equivalent to restricting the processor Loading to 0.682. In other
cases, the required periods may be such that very little increase in
processor Load results from conversion to a simply periodic system

124

Demonstration of local wost yaas

Consider the pattern of Figure E-1. To demonstrate a local worst
case, it is necessary to show that a change in the time of activation,or in the period, or in the processing requir.:.Ment of any task loads to '
an increase in processor utilization over the bad case. I-]

If any task of B to F is activated slightly early, time will be
available for processing task G after task F has been processed. If
task A is activated slightly early, time will be available for
processing task G after task A has been processed for the second time.
If task G is activated early, time is available for processing it at
that time. These changes all increase processor utilization and lead
away from the worst case.

If any task of A to F is activated slightly late, time wiLl be
available for processing task G before the second activation of that
task. If task G is activated slightly late, the pattern is unchanged,
while for greater delays in activation of task G, time is available for
processing task G after the third processing of task A. These changes
all increase processor utilization and lead away from the worst case.

If any task of B to F has a slightly shorter period, the pattern of
usage is unchanged and the processor utilization is increased. If task
A has a slightly shorter period, the processing of task F is split, and
the processor utilization is increased. Thus these changes lead away
from the worst case.

If any task has a slightly longer period, then time is available
for the processing of task G immediately prior to the activation of that
task for the second time. It is necessary to show that the increased
processor utilization from processing task G is greater than the
decreased processor utilisation from the longer period. Lengthening the
period of task A yields the greatest reduction in processor utilisation.
If the period of task A is increased by s and task G processes for s the
change in processor utilization is

-q/nq + q/(nq + d) + d/2nq

- ((n-2)dq + d2)/(2nq(nq + d))
which is positive, indicating an increase in processor utilization and a
move away from the worst case.

Changes in task processing time require more care since a move
towards shorter processing time and more tasks is a more towards the
worst case. It is appropriate to show that a move away from processing
times proportioned to task period is a move away from the worst case.
Consider two tasks of period a and a+q. If the processing requirement
of the short period task is reduced by d, then the period of the longer
period task is reduced by d and its processing is increased by d. The
change in processor utilization is

-q/a + (q-d)/a - q(q+a)/(a(q+a)) + (q + a)q/a

= d2 /(a(q+a-d))
Since this is a term in d2 any change in the processing requirement of a

125

• ,. - ,

task, whether an increase or decrease, increases processor utilisation
and is a move away from the worst case.

To show that a schedule based on task repetition periods is the
best fixed priority schedule, consider interchange of priorities for two -O
tasks. For any two tasks of A to F, the execution pattern changes but
there is stiLl no time in which to process task G. If task G's priority
is interchanged with any task A to E that task will fail to complete its
processing within its first iteration. Since G processes for longer
than the task whose priority it has taken task F will also fail to
complete. If tasks F and G are interchanged in priority, G will
complete while F faiLs, and processor utilisation is reduced.

12

*- q

* U]
126

U1

"j

task A IA IA IA IA IA IA

task B lB B B B B lB

task C I C C IC IC. IC

taskD I D ID ID ID I
, T

task E I I I '

task F I F IF IF IF

task G I 1 I

ABCDEFABCDEFA B C ADEBF AC DB AECF B

time --- > I delimits time periods
for each task iteration

Figure E-1. A Bad Pattern of Tasks for Priority Scheduling

Note that, though the processor is not yet fully loaded, there is no
time available for processing task G within its first iteration. For -

this task pattern the maximum safe processor load is about 0.736. As
the number of tasks in the pattern increases, the maximum safe processor
load diminishes to about 0.693.

0

'Ia

task A IA IA IA IA Ih IA

task B B IB I B t B B
task C IC Ic IC
taskD I D ID ID ID '

task E IE i- E-

task F IF IF IF

task G! G I G G 0

ABDFCGAEBD ACFBEGADC B AFEDCBAG

time --- > I delimits time periods

for each task iteration

Figure E-2. Many tasks completed at the same time

Contrary to intuition this pattern presents no scheduling problems (yet;
it is of course followed immediately by the pattern of Figure E-1).

128

S .'

task A IA IA IA IA IA IA I

task B lB lB lB lB lB lB

task C IC IC C IC C

task D 0 D DD D

task E I s I 5 15

taskF I F IF IF IF

taskG I G I G I G

ABCDEFGABCDEAFBGC ADEBF ACGDB AECF B

time ---- > I delimits time periods
for each task iteration

Figure 3. Tasks from Figure E-1, using the

Deadline Scheduling Algorithm

The deadline algorithm has no difficulty in running task G and could
even find time to run further tasks, in a circumstance in which the
priority algorithm could not run task 0.

lAB lAB lAB lAB 1AB lAB lAB IA

I CCD-D I CCD--D I CCD--D I CCD-

EE ------ F ------- Fl

time ---- > I delimits time period
for each task iteratiion 0

Figure E-4. A sample pattern of tasks for

a simply periodic system

Note that, provided each set of tasks operate on a period which is an

integral multiple of the next shorter period, high processor utilisation

can be achieved safely. If any pair of periods do not have a simple
integral relationship, this high utilization cannot be permitted.

129

Appendix F

THE SPECIAL SPECIFICATION LANGUAGE

.4

131

7 --7

Appendix F

THE SPECIAL SPECIFICATION LANGUAGE

SPECIAL is a specification language used for specifying the

functionaL behavior of modules (Stage 4) and for describing

representations (Stage 5).

The Language originated in the work of Parnas (7], but has evolved

significantly since. SPECIAL lacks some of the mathematical elegance of

the algebraic specification technique [15], but is a more powerful

language capable of expressing some specifications that cannot be

expressed at all by any other specification language. If the full power

of SPECIAL is used, there is no hope of showing that a specification is

complete and consistent,and satisfies a requirement statement, e.g. the

multi-level security model. Indeed it is a feature of SPECIAL that

nondeterministic systems can be specified. However few specifications

need the full power of SPECIAL, and it is possible to write -v
specifications within the kind of restricted domain that allows

straight-forward derivation of the properties of the specification.

1. Dsciption 2f b Language .

The heart of a specification written in SPECIAL is the definition

of the operations on the type. The operations are of three kinds:

£0-functions C0FUN),

* OV-functions (OVFUN),

* V-functions (VFUN).

In the absence of exceptional conditions: .4
0 a V-function invocation (as an operation) returns a value, -q

but causes no state change,

£ an O-function invocation can cause a state change, but
returns no value an OV-function invocation returns a value
and can cause a state change

132

I -

Id
A V-function is denoted as visible if it is an operation of the type and

as hidden if it is internal to the specification. A V-function may also

be derived, meaning that its value is expressed as a function of the

values of other V-functions. The "state" of the type can be thought of

informally as the Cartesian product of the values of all of the V-

functions other than the derived functions. Good practice in the use of

SPECIAL requires that all the visible V-functions be derived, so that

the state functions are all hidden.

In addition, the specification defines:

* initial values for each nonderived V-function. The
specification is required to define initial values for the
full domain of the V-function.
exception conditions for each of the visible V-functions,

O-functions, and OV-functions.

the returned value for each derived V-function and OV-
function.

the values that the nonderived V-functions will acquire
after an invocation of each 0-and OV-function.

assertions about relationships between the values of the
parameters.

SPECIAL allows user-defined local functions. The definition of the

function gives a type to the function and to each of its formal

arguments, and provides a body. Any such function can be used as a sub-

expression in an expression with appropriate actual arguments

substituted for the formal arguments, provided the type of the actual

arguments is consistent with the function definition, and the declared

type of the function is consistent with its use in the expression. For

example, we can define the Boolean function no-string using the

following syntax
BOOLEAN no-string(INTEGER J) IS .1

j < 1 OR j > tlen(), 'n)

where the body follows the reserved word IS, and t-len() is a V-function

of the module. One can use no-string(i) where a Boolean-value is

expected within a scope where i has been declared as an integer.

133

ke-sian-aor

A desian is the name of an object or an instance of the type

being defined. Designators are not manipulatable, except for being

returned as the result of a function or being used as an argument to a

function.

Se~a

In specifying a concept it is often useful to view objects as if

they formed a set. The advantage of the set viewpoint is the absence of

any consideration of ordering or repeated elements. The use of sets in

a specification often leads to simpler specifications and averts

prejudicing a specification with implementation decisions. ALl elements

of a set are of the same type.

If s has been declared to be of type

SET_OF INTEGER

then s can be defined to be a particular integer set. The extensional

constructor explicitly identifies the individual elements. The

following forms are equivalent:

S = (1, 3, 5, 7)
a SET(, 3, 5, 7)

The intentional constructor can also be used:

s= (INTEGER i Io < i AND i < 9 AND i MOD 2 1

The general form for a integer set is

(INTEGER i 1 p(i) }

where p(i) is a Boolean expression. The intentional form is used more

often, since it permits the concise characterization of large sets.

The set of consecutive integers between two given integers can be

specified using the following shorthand:
ss (7 .. 36

A predefined function for sets, is CARDINALITY, which returns an

integer, the number of elements in a set. Thus, -

134

*1

CARDINALITY(s)

would now be 4.

Another predefined function for sets is INSET, which determines

that an element is in a set, returning a result of type BOOLEAN. Thus,

1 INSET s

is TRUe.

For vectors, similar constructors are provided. If iv has been

declared to be of type

VECTOR_OF INTEGER

then the extensional constructor would be used, as:

iv = VECTOR (1, 3, 5, 7)

The intentional constructor for the same vector is

iv = VECTOR(FOR i FROM 1 to 4: 201 - 1).

The predefined function LENGTH returns the number of elements in a ,

vector. Thus

LENGTH(iv)

returns the integer 4.

This form is used to specify an ordered assemblage of objects, not

necessarily of the same type. The elements of a structure are each

identified by a unique name. The structured type employee, each value

of which contains 3 elements, could be declared as follows

employee: STRUCT_.OF(INTEGER id, age; VECTOR_OF CHAR title)

A particular instance, Williams, of the type employee can be expressed

as

01

135 2
.11

-r

WiLliams STRUCT(15024, 22, SrAdm_Aide).

Particular components can be referred to by using the component name as

an extractor

Williams.age

has value 22.

Undefined Vaue

It is often useful in a specification to indicate that a particular

object has no value. We use the particular symbol ? (shorthand for

UNDEFINED) to represent no value. Often, the initial values of

primitive V-functions are most conveniently specified to be ?, rather

than some random value. In SPECIAL, ? is a member of all types unless

explicitly excluded. Thus the type INTEGER consists of the values
{ . ., -2, -1, 0, ?, 1, . . }

The rules of the grammar are satisfied when a V-function is declared to

be of type INTEGER, and the specification indicates that the initial

value for certain of its associated V-functions is ?.
-U

Functionfl initions

A hidden V-function definition has the form:

VFUN v(typespecl argl;) -> typespec result;
HIDDEN;
INITIALLY

expr;

The expression following INIrIALLY is an expression that characterizes

the initial value(s) for each possible argument. Generally, "expr" is

of the form

result expression

possibly being

S result ?

as shorthand for: result is ? in the initial state for all possible

arguments to v.

136

gr

A visible V-function has the form:

VFUN v(typespecl arg2; ...) -> typespec result;
EXCEPTIONS

exl ;
ex2;

INITIALLY
expr;

Each of the exception conditions is of the form

except tonname: expression,

where "exceptionname" is name assigned to the exception condition, and

expression is a Boolean expression of the arguments, V-functions, and

parameters. The exceptionname enables a program using the operations of

the type to discriminate between the possible exceptions. GeneraLly,

but not always, an abstract program invoking a visible function will

test for the existence of the exceptions in the order they appear in the

specification. Thus, if the expressions associated with dl, ... di-1

evaluate to FALSE for the arguments of the function invocation, and the

expression associated with di evaluates to TRUE, then di will be

"raised"; subsequent exception conditions are not tested. If "v" has no

exception conditions then the "exceptions section" is omitted.

A derived V-function has the form:

VFUN v(typespecl argi; ...) -> typespec result
EXCEPTIONS

DERIVATION
expr;

where the expression following DERIVATION defines the result in terms of

the arguments, primitive V-functions, and parameters. The type of the
expression should be the type of the function. W

An OV-function has the form:

137

< - - -

OVFUN ov(typespecl argi;) -> typespec result;
EXCEPTIONS

EFFECTS
efl;
ef2;

efq;

Each of the effects efl efq is an assertion that relates the value

of the result and/or the new (after the invocation) value of primitive

V-function positions, to the values of the arguments, the prior (before Ir

the invocation) values of V-functions, and the parameters. The notation

'v(x) is used to denote the new value of a V-function. In the EFFECTS

section, the results and the new values for V-functions are defined by

the conjunction of all of the effects assertions. They appear as

separate expressions only for ease of presentation. There is no concept

of order implied here since we could have equivalently stated the

EFFECTS as the single expression

efl AND ... AND efq.

As indicated previously, these effects occur only when an operation does

not cause any of the exception predicates to be satisfied.

The schema for an 0-function is identical to that of an OV-

function, except that no returned result is indicated.

With this brief introduction to SPECIAL the reader should be able

to follow the example specification.

a. An Exa at & Specification a PECIAL .

The module "sequences" defines a collection of word files

(sequences), each of which is identified by a unique designator of type

nameseg. A user of the module can request the creation of a new

sequence; an existing sequence can be cleared to its initial state, but

never be deleted, so that there is no recycling of nameseg designators.

138

•~~~ .- --.. -.- - - - - -

For reading, the words of a sequence are randomly accessed by position.

A sequence is grown by appending words to the end. Two words of a

sequence can be interchanged. The operations defined are:

0 nameseg; a designator type, the values of which are names

of sequences.

0 string (nameseg n; INTEGER J) -> word w; a visible V-
function that returns the word w at position j in the
designated sequence n; word is a named type that is
precisely defined later. As the only V-function, string
captures the "state" of each sequence in the system.

0 seqLen(nameseg n) -> INTEGER v; a derived visible V-
function that returns the current length of sequence n.
The value of seqlen(n) can be derived from the value of

string(n, j).

0 createseq() -> nameseg n; an OV-function that creates a
new sequence, initializes it, and assigns a designator to
it. -

0 clearseq(nameseg n); an O-function that clears a - t
designated sequence.

0 append(nameseg n; word w); an O-function that adds the
word w to the end of the sequence.

0 swapseq(nameseg n; INTEGER i, J); an 0-function that
causes the words in positions i and j to be exchanged.

The specification of sequences contains three paragraphs. The

FUNCTIONS paragraph contains the details of the specification for each

function. The DEFINITIONS paragraph contains the definitions of local

functions. The TYPES paragraph declares types that are to be referred

to in the specification.

The TYPES paragraph must contain the declaration of the

designator type introduced in this module. Thus we declare nameseg as

the type whose values are the string sequences of interest. Other -

types, e.g. subtypes or aggregate types, can be declared here. In the

sequences specification we declare the aggregate subtype "word". Note

that the definition of a word.

the set of all character vectors whose length is positive,

underscores the notion of a type as a set of values. No upper limit on

* . the length of a word is imposed here. In the specification of the -

139

..- ---

individual functions, we will confront the (inevitable) problem of

handling physical storage limitations.

The next module paragraph is the DEFINITIONS paragraph. A

function definition is an expression, of declared type, in terms of the

V-functions, parameters, or other defined functions of the module. A

definition can have arguments or not as required. Thus, the general

form of a definition is

typespec defname(typespecl argl, ...) IS body

Now let us consider the function specifications in turn.

Stringstate is a hidden V-function that returns the word w at

position j in the designated sequence n. As the only non-derived V-

function, stringstate captures the "state" of each sequence in the

system.

The expression in the INITIALLY section,

w= ?

is shorthand for

initially, for all sequences the value of all positions is ?.

String is the visible derived V-function that returns the word

w at position j in the designated sequence n. Its derivation is merely

the hidden V-function stringatate. .
A single exception corresponds to no word being present at

position J. The reader might question the absence of any exception

condition corresponding to the formal argument n. What if a user

invokes string(nn, J) with some designator nn that is not an existing , -

nameseg, possibly being of a different type? It would be necessary to

define such an exception only in a context where such a circumstance is

expected and must be guarded against. For many types, intended for use

in a strictly typed context, such checks would be regarded as

unnecessary.

140

*VI

-w

sealen

Seqlen is a derived visible V-function that returns the

current length of sequence n. The derivation (returned value) is

expressed as

consider an integer set that contains all of the
integer positions that store a word whose value is
not ?; the returned value is the cardinality of this
set.

.0°

It is emphasized that this is a specification for determining the number "

of words in a sequence. It is not an implementation, which would likely

be carried out using a memory cell to hold the current sequence Length. -j

Create_seq is an OV-function that creates a new sequence,

initializes it, and assigns a designator to it. To express, as an

effect, the generation of a never previously generated nameseg

designator we use the notation

NEW(nameseg).

NEW is a predefined function in SPECIAL, that requires an argument of _

type DESIGNATOR. As part of the underlying semantics of NEW, it never

returns ""

One final note about the specification of create_seq concerns

the apparent absence of any effect to express the initialization of a

newly created sequence. Such an expression is not needed here since the

initial value of stringstate(n, J) is ?, which is precisely what is

desired of a sequence after it is created. Thus, the act of creating a

sequence is to make a nameseg designator n available so that words can

be appended to n, swapped and subsequently read out.

CLearseq is an O-function that clears a designated sequence.

We express this effect by indicating that the value in all positions of

the sequence is to be ?. This specification illustrates how a desirable

concise specification can appear to be an over-specification; positions

141

that were previously ? are re-specified to be ?. An equivalent, but

less desirable specification is

FORALL INTEGER j INSET {1...seqlen(n)}: 'stringstate(n, J) ?

indicating that all positions in the sequence that previously stored

defined words, will have value ? after the invocation. The reader

should note that in a specification conciseness is desirable, as

contrasted with an implementation where efficiency is generally vital.

Apt.end

Append is an 0-function that adds the word w to the end of the

sequence. As the effect indicates, after an invocation word w will be
at position

seqlen(n) + 1

which is the newly-created end-position of the sequence. This

specification illustrates the purposeful omission in the EFFECTS section W

of V-function positions whose values one left unchanged. The following

expressions are implicit:

FORALL INTEGER j -= seqlen(n) + 1:
'stringstate(n, J) z stringstate(n, J);

FORALL INTEGER J; nameseg n -= n:
'stringstate(nl, J) = stringstate(n, J)

The first expression indicates that all positions of n except seqlen(n)

+ 1 are left unchanged, and the second that all positions of all other

sequences are left unchanged.

Swa~a se

Swap-seq is an 0-function that causes the words in positions i

and j to be exchanged. Based on the above discussion the specification

should be self-explanatory. Note that no order of operation is implied

in the EFFECTS section. After an invocation of swapseq both

expressions will be TRUE. There is no intermediate state.

142

TeSpecificati on of khe Module 2~Ua

MODULE sequences
$(maintains an unspecified number of variable length --

sequences of character strings (words) , each string of
variable Length. For reading, words can be randomly
accessed. New words can be inserted at the end of a
sequence. Words can be exchanged)

TYP-S

nameseq: DESIGNATOR; $(names of sequences)
word: { VECTOROF CHAR vc LENGTH(vc) > 0 1;

DEFINITIONS

BOOLEAN noword(nameseq n; INTEGER J)
IS NOT j INSET 1 1 .. seqlen(n) };

FUNCTIONS

VFUN stringstate(nameseq n; INTEGER J) -> word w;

HIDDEN;
INITIALLY S

w+

VFUN string(nameseq n; INTEGER J) -> word w;
$(returns the J-th string in sequence n)

EXCEPrIONS
noword : noword(n, J);

DERIVATION
w = stringstate(n,j);

YFUN seqlen(nameseq n) -> INTEGER v;
$(returns the number of strings in sequence n)
DERIVATION

CARDINALITY((INTEGER j I stringstate(n, J) -= ?);

OVFUN createseqo) -> nameseq n;
$(creates a new sequence all words of which are
undefined. A newly generated designator is returned)

EXCEPTIONS
RESOURCEERROR;

EFFECTS
n NEW(nameseq);

S

143

- -. . .- -. - -.-- - - -- - --

7.OFUN olear..seq(nameseq n); $(clears sequence n)
EFFECTS

FORALL INTEGER J: Istringstate(n, J) =?

OFUN append(nameseq n; word w);
$appends word w to the end of the sequence n)
EXCEPTIONS

RESOURCE-ERROR;
EFFECTS

Istringstate~n, seqlen(n) + 1) w

OFUN swapseq(nameseq n; INTEGER i, J);
$(exchanges words in positions i and j of sequence n)

EXCEPTIONS
no-wordi no-word~n, 0);

* no_word2 :no-word(n, J);
EFFECTS

* 'stringstate(n, i) =stringstate~n, J);
Istringstate(n, J) =stringstate~n, i);

ENDJIODULE

4W 4

144 -1

REFERENCES

1. D. E. Bell, L. J. LaPadula, Secure Computer Systems: Mathematical
Foundations and Model, MITRE Corp., Bedford, MA (Sept. 1974).

2. K. J. Biba, Integrity Consideralions for Secure Computer Systems,
MTR-3153 Rev. 1, MITRE Corp., Bedford MA (April 1977).

3. R. J. Feiertag, K. N. Levitt, L. Robinson, Proving Multilevel
Security of a System Design, Proc. Sixth ACM Symposium on Operating
Systems Principles, Purdue Univ., West Lafayette IN (Nov. 1977).

4. J. K. Millen, Security Kernel Validation in Practice, CACM vol. 19
no. 5, pp. 243-250 (May 1976).

5. K. G. Walter, et al., Initial Structured Specifications for an
Uncompromisable Computer Security System, Case Western
Reserve University, CLeveland OH (July 1975).

6. E. W. Dijkstra, "Notes on Structured Programming," in Strutr
Prgramini., C. A. R. Hoare, ed. (Academic Press,New York, 1972).

7. D. L. Parnas, "A Technique for Software Module Specification with
Examples," Comm. AM, Vol. 15, No. 5, pp. 330-336 (May 1972).

8. C. A. f. Hoare, "Proof of Correctness of Data Representations," . *:

Ag Ino mza J, Vol. 1, pp. 271-281 (1972).

9. R. W. Floyd, "Assigning Meanings to Programs," Mat atcal Afia" "

2f Com uear Sience, Vol. 19, J. T. Schwartz, ed., pp. 19-32
(American Mathematica Society, Providence, Rhode Island,(1967).

10. L. Rpbinson and K. N. Levitt, "Proof Techniques for Hierarchically
Structured Programs," Comm.ACM, Vol. 20, No. 4, pp. 271-283 (ApriL
1977).

11. L. Robinson, "The HDM Handbook," Volume I: Foundations of
HDM,Contraot N00123-76-C-0195, Naval Ocean Systems Center, San
Diego,California, prepared by SRI International, June 1979.

12. B. Silverberg,K. N. Levitt, and L. Robinson,"The HDM Handbook,"
Volume II: The Languages and Tools of HD,Contract N00123-76-C-
0195, Naval Ocean System Center,San Diego, California, prepared by
SRI InternationaL, June 1979.

13. K. N. Levitt, L. Robinson, and B. Silverberg,"The HDM Handbook,"

145

i-1

Volume III: A Detaited Example on the Use of HDN, SRI
InternatLional, prepared under Contract N00123-76-C-O195June 1979.

141. Ford Aerospace & Communications Corp., "Secure -W
Minioomputer Operating Syslem (KSOS), Verification Plan," Contract
MDA 903-1T-C-0333,Maroh 1978.

15. J. Guttag, E. Horowitz, and D. Musser, "Abstraot Data Types and
Software Validation," Comm, ACI, Vol. 21, No. 4, pp. 1048-1064
(Dec. 1978).

16. J. H. Wensley, L. Lamport, J. Goldberg,M. W. Green, K. N. Lei'itt,
P. M. Mttiar-Smith, R. E. Shostak,and C. B. Weinstock, SIFT: The
Design and Analysis of a Fautt-rolerant Computer for Aircraft
Control, P of Lb& U&&, October 1978, pp. 1240-1255.

7. -

q

146i

146j

'p

FILMED

